Skip to main content
Log in

A Generalization of a Theorem of Erné about the Number of Posets with a Fixed Antichain

  • Published:
Order Aims and scope Submit manuscript

Abstract

Let X and Z be finite disjoint sets and let y be a point not contained in XZ. Marcel Erné showed in 1981, that the number of posets on XZ containing Z as an antichain equals the number of posets R on XZy in which the points of Z{y} are exactly the maximal points of R. We prove the following generalization: For every poset Q with carrier Z, the number of posets on XZ containing Q as an induced sub-poset equals the number of posets R on XZ ∪{y} which contain Q + y as an induced sub-poset and in which the maximal points of Q + y are exactly the maximal points of R. Here, Q + y denotes the direct sum of Q and the singleton-poset on y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandroff, P.: Sur les espaces discrets. Comptes Rendus de l’Acad. des Sci. 200, 1469–1471 (1935)

    MATH  Google Scholar 

  2. Alexandroff, P.: Diskrete Räume. Mat. Sb. (N.S.) 2, 501–518 (1937)

    MATH  Google Scholar 

  3. Birkhoff, G.: Lattice Theory. Proc. Amer. Math. Soc. Coll. Publ. 25 3rd ed (1967)

  4. Brinkmann, G., McKay, B.D.: Posets on up to 16 points. Order 19, 147–179 (2002)

    Article  MathSciNet  Google Scholar 

  5. Butler, K.K.-H.: The number of partially ordered sets. J. Combin. Theory (B) 13, 276–289 (1972)

    Article  MathSciNet  Google Scholar 

  6. Butler, K.K.-H., Markowsky, G.: Enumeration of finite topologies. In: Proc. fourth Southeastern Conf. on Combinatorics, Graph Theory and Computing. Utilitas Mathematica, Winnipeg, pp 169–184 (1973)

  7. a Campo, F.: A framework for the systematic determination of the posets on n points with at least τ ⋅ 2n downsets. Order 36, 119–157 (2019). Published Online May 29, 2018. https://doi.org/10.1007/s11083-018-9459-2

  8. a Campo, F., Erné, M.: Exponential functions of finite posets and the number of extensions with a fixed set of minimal points. J. Comb. Math. Comb. Calc. 110, 125–156 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Erné, M.: Struktur- und Anzahlformeln für Topologien auf endlichen Mengen. PhD Dissertation, Westfälische Wilhelms-Universität zu Münster (1972)

  10. Erné, M.: Struktur- und Anzahlformeln für Topologien auf endlichen Mengen. Manuscripta Math. 11, 221–259 (1974)

    Article  MathSciNet  Google Scholar 

  11. Erné, M.: On the cardinalities of finite topologies and the number of antichains in partially ordered sets. Discrete Math. 35, 119–133 (1981)

    Article  MathSciNet  Google Scholar 

  12. Erné, M., Stege, K.: Counting finite posets and topologies. Order 8, 247–265 (1991)

    Article  MathSciNet  Google Scholar 

  13. Heitzig, J., Reinhold, J.: The number of unlabeled orders on fourteen elements. Order 17, 333–341 (2000)

    Article  MathSciNet  Google Scholar 

  14. Parchmann, R.: On the cardinalities of finite topologies. Discrete Math. 11, 161–172 (1975)

    Article  MathSciNet  Google Scholar 

  15. Sharp, H.: Quasi-orderings and topologies on finite sets. Proc. Amer. Math. Soc. 17, 1344–1349 (1966)

    Article  MathSciNet  Google Scholar 

  16. Sharp, H.: Cardinality of finite topologies. J. Combin. Theory 5, 82–86 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to the anonymous reviewer #1 for his numerous valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank a Campo.

Ethics declarations

The author did not receive support from any organization for the submitted work. He has no relevant financial or non-financial interests to disclose, and he has no conflicts of interest to declare that are relevant to the content of this article. The author certifies that he has no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The author has no financial or proprietary interests in any material discussed in this article. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campo, F.a. A Generalization of a Theorem of Erné about the Number of Posets with a Fixed Antichain. Order 39, 421–434 (2022). https://doi.org/10.1007/s11083-021-09585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-021-09585-0

Keywords

Navigation