Skip to main content
Log in

Fractional Local Dimension

  • Published:
Order Aims and scope Submit manuscript

Abstract

The original notion of dimension for posets was introduced by Dushnik and Miller in 1941 and has been studied extensively in the literature. In 1992, Brightwell and Scheinerman developed the notion of fractional dimension as the natural linear programming relaxation of the Dushnik-Miller concept. In 2016, Ueckerdt introduced the concept of local dimension, and in just three years, several research papers studying this new parameter have been published. In this paper, we introduce and study fractional local dimension. As suggested by the terminology, our parameter is a common generalization of fractional dimension and local dimension. For a pair (n, d) with 2 ≤ d < n, we consider the poset P(1, d; n) consisting of all 1-element and d-element subsets of \(\{1,\dots ,n\}\) partially ordered by inclusion. This poset has fractional dimension d + 1, but for fixed d ≥ 2, its local dimension goes to infinity with n. On the other hand, we show that as n tends to infinity, the fractional local dimension of P(1,d; n) tends to a value FLD(d) which we will be able to determine exactly. For all d ≥ 2, FLD(d) is strictly less than d + 1, and for large d, \(\text{FLD} (d)\sim d/(\log d-\log \log d-o(1))\). As an immediate corollary, we show that if P is a poset, and d is the maximum degree of a vertex in the comparability graph of P, then the fractional local dimension of P, is at most 2 + FLD(d). Our arguments use both discrete and continuous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrera-Cruz, F., Prag, T., Smith, H.C., Taylor, L., Trotter, W.T.: Comparing Dushnik-Miller dimension, Boolean dimension and local dimension. Order 37, 243–269 (2020)

    Article  MathSciNet  Google Scholar 

  2. Biró, C., Hamburger, P., Pór, A.: The proof of the removable pair conjecture for fractional dimension, Electron. J. Comb. 21, #P1.63 (2014)

  3. Biró, C., Hamburger, P., Pór, A., Trotter, W.T.: Forcing posets with large dimension to contain large standard examples. Graphs Combin. 32, 861–880 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bosek, B., Grytczuk, J., Trotter, W.T.: Local dimension is unbounded for planar posets, submitted. arXiv:1712.06099

  5. Brightwell, G.R., Scheinerman, E.R.: On the fractional dimension of partial orders. Order 9, 139–158 (1992)

    Article  MathSciNet  Google Scholar 

  6. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. (2) 41, 161–166 (1950)

    Article  MathSciNet  Google Scholar 

  7. Dushnik, B.: Concerning a certain set of arrangements. Proc. Amer. Math. Soc. 1, 788–796 (1950)

    Article  MathSciNet  Google Scholar 

  8. Dushnik, B., Miller, E.W.: Partially ordered sets. Amer. J. Math. 63, 600–610 (1941)

    Article  MathSciNet  Google Scholar 

  9. Erdös, P., Kierstead, H., Trotter, W.T.: The dimension of random ordered sets. Random Struct. Algorithm. 2, 253–275 (1991)

    Article  MathSciNet  Google Scholar 

  10. Felsner, S., Mészáros, T., Micek, P.: Boolean dimension and tree-width. Combinatorica. https://doi.org/10.1007/s00493-020-4000-9 (2020)

  11. Felsner, S., Trotter, W.T.: On the fractional dimension of partially ordered sets. Discret. Math. 136, 101–117 (1994)

    Article  MathSciNet  Google Scholar 

  12. Füredi, Z., Kahn, J.: On the dimension of ordered sets of bounded degree. Order 3, 15–20 (1988)

    Article  MathSciNet  Google Scholar 

  13. Gambosi, G., Nešetřil, J., Talamo, M.: On locally presented posets. Theor. Comput. Sci. 70, 251–260 (1990)

    Article  MathSciNet  Google Scholar 

  14. Kierstead, H.A.: The order dimension of the 1-sets versus the k-sets. J. Comb. Theory Ser. A 73, 219–228 (1996)

  15. Kim, M., Masarík, S., Smith, U., Wang, Z.: On difference graphs and the local dimension of posets. Eur. J. Combin. 86, 103074 (2020)

  16. Mészáros, T., Micek, P., Trotter, W.T.: Boolean dimension, components and blocks. Order 37, 287–298 (2020)

    Article  MathSciNet  Google Scholar 

  17. Nešetřil, J., Pudlák, P.: A note on Boolean dimension of posets, Irregularities of partitions (Fertőd 1986), Algorithms Combin. Study Res. Texts, vol. 8, pp. 137–140. Springer, Berlin (1989)

  18. Scott, A., Wood, D.: Better bounds for poset dimension and boxicity. Trans. Amer. Math. Soc. 373, 2157–2172 (2020)

    Article  MathSciNet  Google Scholar 

  19. Spencer, J.: Minimal scrambling sets of simple orders. Acta Math. Hungar. 22, 349–353 (1972)

    Article  MathSciNet  Google Scholar 

  20. Trotter, W.T.: Combinatorics and partially ordered sets: Dimension theory. The Johns Hopkins University Press, Baltimore (1992)

  21. Trotter, W.T., Walczak, B.: Boolean dimension and local dimension. Electron Notes Discret. Math. 61, 1047–1053 (2017)

    Article  Google Scholar 

  22. Trotter, W.T., Winkler, P.M.: Ramsey theory and sequences of random variables, Probability. Comb Comput. 7, 221–238 (1998)

    Article  Google Scholar 

  23. Ueckerdt, T.: Personal communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather C. Smith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, H.C., Trotter, W.T. Fractional Local Dimension. Order 38, 329–350 (2021). https://doi.org/10.1007/s11083-020-09543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-020-09543-2

Keywords

Navigation