Universality Property and Dimension for Frames


The universality property plays an important role in the field of frames and the notion of saturated class of frames is combined with this property (see Dube et al. (Topology and its Applications 160, 2454–2464, 2013); Iliadis (Topology and its Applications 179, 99–110, 2015) and Iliadis (Topology and its Applications 201, 92–109, 18)). In this paper, we continue such a study, introducing and studying the notion of saturated class of bases for frames. Based on the notions of the small inductive dimension, frind, for frames, which is inserted in Georgiou et al. (2019), and the saturated class of bases, we define the base dimension like-function of the type frind for frames, and prove that in a class of bases which is characterized by this dimension there exist universal elements.

This is a preview of subscription content, access via your institution.


  1. 1.

    Banaschewski, B., Gilmour, G.: Stone-Čech compactification and dimension theory for regular σ-frames. J. London Math. Soc. 39(2), 1–8 (1989)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Banaschewski, B.: Universal zero-dimensional compactifications. Categorical topology and its relation to analysis, algebra and combinatorics (Prague, 1988), World Sci. Publ., Teaneck, NJ, 257–269 (1989)

  3. 3.

    Berghammer, R., Winter, M.: Order-and graph-theoretic investigation of dimensions of finite topological spaces and Alexandroff spaces. Monatshefte für Mathematik. https://doi.org/10.1007/s00605-019-01261-1 (2019)

  4. 4.

    Brijlall, D., Baboolal, D.: Some aspects of dimension theory of frames. Indian J. Pure Appl. Math. 39(5), 375–402 (2008)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Brijlall, D., Baboolal, D.: The katětov-morita theorem for the dimension of metric frames. Indian J. Pure Appl. Math. 41(3), 535–553 (2010)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Charalambous, M. G.: Dimension theory of σ-frames. J. London Math. Soc. 8(2), 149–160 (1974)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Dube, T., Iliadis, S., van Mill, J., Naidoo, I.: Universal frames. Topology and its Applications 160, 2454–2464 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Engelking, R.: Theory of dimensions, finite and infinite. Sigma series in pure mathematics, vol. 10. Heldermann Verlag, Lemgo (1995)

    Google Scholar 

  9. 9.

    Español, L., Gutiérrez, G. J., Kubiak, T.: Separating families of locale maps and localic embeddings. Algebra Universalis 67, 105–112 (2012)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Georgiou, D., Iliadis, S., Megaritis, A., Sereti, F.: Small inductive dimension and universality on frames. Accepted for publication in Algebra Universalis (2019)

  11. 11.

    Georgiou, D., Kougias, I., Megaritis, A., Prinos, G., Sereti, F.: A study of a new dimension for frames. Accepted for publication in Topology and its Applications (2019)

  12. 12.

    Georgiou, D. N., Megaritis, A. C., Sereti, F.: A topological dimension greater than or equal to the classical covering dimension. Houst. J. Math. 43(1), 283–298 (2017)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Gevorgyan, P. S., Iliadis, S. D., Sadovnichy, Y.V.: Universality on frames. Topology and its Applications 220, 173–188 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Iliadis, S.: A constuction of containing spaces. Topology and its Applications 107, 97–116 (2000)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Iliadis, S. D.: Universal spaces and mappings North-Holland mathematics studies, vol. 198. Elsevier Science B.V., Amsterdam (2005)

    Google Scholar 

  16. 16.

    Iliadis, S. D.: Universal regular and completely regular frames. Topology and its Applications 179, 99–110 (2015)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Iliadis, S. D.: Dimension and universality on frames. Topology and its Applications 201, 92–109 (2016)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Isbell, J. R.: Graduation and Dimension in Locales. In: Aspects of Topology (in Memory of Hugh Dowker 1912–1982). London Math. Soc. Lecture Note Ser., Vol. 93, pp 195–210. Cambridge Univ. Press, Cambridge (1985)

  19. 19.

    Menger, K.: Über die Dimensionalität von Punktmengen, Erster. Teil Monatshefte für Mathematik und Physik 33, 148–160 (1923)

    Article  Google Scholar 

  20. 20.

    Menger, K.: Über die Dimension von Punktmengen, II. Teil. Monatshefte für Mathematik und Physik 34, 137–161 (1926)

    Article  Google Scholar 

  21. 21.

    Pears, A. R.: Dimension theory of general spaces. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  22. 22.

    Picardo, J., Pultr, A.: Frames and Locales. Topology without points. Frontiers in mathematics. Birkhäuser/Springer, Basel (2012)

    Google Scholar 

  23. 23.

    Sancho de Salas, J. B., Sancho de Salas, M. T.: Dimension of distributive lattices and universal spaces. Topology and its Applications 42, 25–36 (1991)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Vinokurov, V.G.: A lattice method of defining dimension. Dokl. Akad. Nauk SSSR 168(3), 663–666 (1966). (Russian)

    MathSciNet  MATH  Google Scholar 

Download references


The authors would like to thank the reviewer for the careful reading of the paper and the useful comments.

Author information



Corresponding author

Correspondence to D. Georgiou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The fourth author of this paper F. Sereti (with Scholarship Code: 2547) would like to thank the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) for the financial support of this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Georgiou, D., Iliadis, S., Megaritis, A. et al. Universality Property and Dimension for Frames. Order 37, 427–444 (2020). https://doi.org/10.1007/s11083-019-09513-3

Download citation


  • Base dimension like-function
  • Small inductive dimension
  • Frame
  • Saturated class of bases
  • Universality property