Ambiguous Representations of Semilattices, Imperfect Information, and Predicate Transformers


Crisp and lattice-valued ambiguous representations of one continuous semilattice in another one are introduced and operation of taking pseudo-inverse of the above relations is defined. It is shown that continuous semilattices and their ambiguous representations, for which taking pseudo-inverse is involutive, form categories. Self-dualities and contravariant equivalences for these categories are obtained. Possible interpretations and applications to processing of imperfect information are discussed.


  1. 1.

    Akian, M.: Densities of invariant measures and large deviations. Trans. Amer. Math. Soc. 351(11), 4515–4543 (1999)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bergmann, M.: Introduction to many-valued and fuzzy logic: Semantics, algebras, and derivation systems. Cambridge University Press, New York (2008)

    Google Scholar 

  3. 3.

    Edalat, A.: Domains for computation in mathematics, physics and exact real arithmetic. Bull. Symb. Logic 3(4), 401–452 (1997)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Erné, M.: Z-distributive function spaces preprint (1998)

  5. 5.

    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S., Lattices, Continuous: Domains encyclopedia of mathematics and its applications, vol. 93. Cambridge University Press, New York (2003)

  6. 6.

    Cohen, G., Gaubert, S., Quadrat J.-P.: Duality and separation theorems in idempotent semimodules. arXiv:math/0212294v2 [math.FA], 29 (2003)

  7. 7.

    Hájek, P.: Fuzzy logics with noncommutative conjuctions. J. Logic Computation 13(4), 469–479 (2003)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Heckmann, R., Huth, M.: A duality theory for quantitative semantics. In: Proceedings of the 11th International Workshop on Computer Science Logic, vol. 1414 of Lecture Notes in Computer Science. Springer Verlag, 255–274 (1998)

  9. 9.

    Johnstone, P.T.: Stone spaces Cambridge studies in advanced mathematics, vol. 3. Cambridge University Press, New York (1983)

    Google Scholar 

  10. 10.

    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998)

    Google Scholar 

  11. 11.

    Melliès, P.-A.: Dialogue categories and chiralities. Publ. Res. Inst. Math. Sci. 52(4), 359–412 (2016)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Nykyforchyn, O.R.: Capacities with values in compact Hausdorff lattices. Appl. Categ. Struct. 15(3), 243–257 (2008)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Nykyforchyn, O., Mykytsey, O.: Conjugate measures on semilattices. Visnyk Lviv Univ. 72, 221–231 (2010)

    MATH  Google Scholar 

  14. 14.

    Nykyforchyn, O., Mykytsey, O.: L-idempotent linear operators between predicate semimodules, dual pairs and conjugate operator. Mathematical Bulletin of the Shevchenko Scientific Society 8, 299–314 (2011)

    MATH  Google Scholar 

  15. 15.

    Nykyforchyn, O., Repovš, D.: Ambiguous representations as fuzzy relations between sets. Fuzzy Set. Syst. 173, 25–44 (2011)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Nykyforchyn, O.R., Repovš, D.: L-fuzzy strongest postcondition predicate transformers as L-idempotent linear or affine operators between semimodules of monotonic predicates. Fuzzy Set. Syst. 208, 67–78 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Scott, D.S. Nielsen, M., Schmidt, E.M. (eds.): Domains for denotational semantics. Springer, Berlin (1982)

Download references

Author information



Corresponding author

Correspondence to Oleh Nykyforchyn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nykyforchyn, O., Mykytsey, O. Ambiguous Representations of Semilattices, Imperfect Information, and Predicate Transformers. Order 37, 319–339 (2020).

Download citation


  • Ambiguous representation
  • Continuous semilattice
  • Duality of categories
  • Imperfect information