Skip to main content
Log in

Investigating posets via their maximal chains

  • Published:
Order Aims and scope Submit manuscript

Abstract

By considering the number of maximal chains going through each element of an arbitrary poset, we prove an extension of Erdős’s generalisation of Sperner’s Theorem, together with a partial converse. By considering the number of maximal chains between pairs of comparable elements, we also prove a generalisation of the LYM inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I.: Combinatorics of Finite Sets. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  2. Beck, M., Zaslavsky, T., Shorter, A: Simpler, stronger proof of the Meshalkin-Hochberg-Hirsch bounds on componentwise antichains. Journal of Combinatorial Theory, Series A 100, 196–199 (2002)

    Article  MathSciNet  Google Scholar 

  3. Beck, M., Wang, X., Zaslavsky, T.: A Unifying Generalization of Sperner’s Theorem. In: Gyõri, E., Katona, G.O.H., Lovasz, L. (eds.) More Sets, Graphs and Numbers: a Salute to Vera Sos and Andras Hajnal, In: Bolyai Soc. Math. Stud., vol. 15, pp 9–24. Springer, Janos Bolyai Mathematical Society, Berlin, Budapest (2006)

  4. Bollobäs, B.: On generalized graphs. Acta Math. Acad. Sci. Hung. 16, 447–452 (1965)

    Article  Google Scholar 

  5. Chudak, F., Griggs, J.R.: A new extension of Lubell’s inequality to the lattice of divisors. Stud. Sci. Math. Hung. 35, 347–351 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Engel, K.: Sperner Theory, Encyclopedia of Mathematics and its Applications, vol. 65. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Erdős, P.: On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51, 898–902 (1945)

    Article  MathSciNet  Google Scholar 

  8. Erdös, P.L., Katona, G.O.H.: Convex Hulls of more–Part Sperner Families. Graph and Combinatorics 2, 123–134 (1986)

    Article  MathSciNet  Google Scholar 

  9. Grätzer, G.: General Lattice Theory, 2nd edn. Basel Switzerland, Birkhäuser Verlag (1998)

    MATH  Google Scholar 

  10. Hochberg, M., Hirsch, W.M., families, Sperner: Sperner families, s-systems, and a theorem of Meshalkin. Ann. New York Acad. Sci. 175, 224–237 (1970)

    Article  MathSciNet  Google Scholar 

  11. Kleitman, D.J.: On an extremal property of antichains in partial orders: the LYM property and some of its implications and applications, Combinatorics (M. Hall and J. H. van Lint, editors). Math. Centre Tracts, Amsterdam 55, 77–90 (1974)

    Google Scholar 

  12. Lubell, D.: A short proof of Sperner’s lemma. J. Combin. Theory 1, 299 (1966)

    Article  MathSciNet  Google Scholar 

  13. Meshalkin, L.D.: Generalization of Sperner’s Theorem on the number of subsets of a finite set. Teor. Verojatnost. i Primenen 8, 219–220 (1963). English transl.: Theor. Probab. Appl., 8 (1963), 203–204.[In Russian.]

    MathSciNet  MATH  Google Scholar 

  14. Harper, L.H., Rota, G.-C.: Matching theory, an introduction. In: Ed, P. (ed.) Advances in Probability and Related Topics, vol. 1, pp 169–215. Marcel Dekker, New York (1971)

  15. Sperner, E.: Ein Satz ü,ber Untermengen einer endlichen Menge. Math. Z. 27, 544–548 (1928)

    Article  MathSciNet  Google Scholar 

  16. Yamamoto, K.: Logarithmic order of free distributive lattices. J. Math. Soc. Japan 6, 343–353 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was done when the first author was a postdoctoral researcher at IPM (Institute for Research in Fundamental Sciences). He was also supported in part by INSF (Iran National Science Foundation). We would like to thank the anonymous referee, who helped us improve the clarity and accessibility of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hadi Afzali Borujeni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borujeni, S.H.A., Bowler, N. Investigating posets via their maximal chains. Order 37, 299–309 (2020). https://doi.org/10.1007/s11083-019-09506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-019-09506-2

Keywords

Navigation