Comparing Dushnik-Miller Dimension, Boolean Dimension and Local Dimension


The original notion of dimension for posets is due to Dushnik and Miller and has been studied extensively in the literature. Quite recently, there has been considerable interest in two variations of dimension known as Boolean dimension and local dimension. For a poset P, the Boolean dimension of P and the local dimension of P are both bounded from above by the dimension of P and can be considerably less. Our primary goal will be to study analogies and contrasts among these three parameters. As one example, it is known that the dimension of a poset is bounded as a function of its height and the tree-width of its cover graph. The Boolean dimension of a poset is bounded in terms of the tree-width of its cover graph, independent of its height. We show that the local dimension of a poset cannot be bounded in terms of the tree-width of its cover graph, independent of height. We also prove that the local dimension of a poset is bounded in terms of the path-width of its cover graph. In several of our results, Ramsey theoretic methods will be applied.

This is a preview of subscription content, log in to check access.


  1. 1.

    Barrera-Cruz, F., Felsner, S., Mészáros, T., Micek, P., Smith, H., Taylor, L., Trotter, W.T.: Separating tree-chromatic number from path-chromatic number. J. Combin. Theory Ser. B 138, 206–218 (2019)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Biró, C., Hamburger, P., Pór, A., Trotter, W.T.: Forcing posets with large dimension to contain large standard examples. Graphs Combin. 32, 861–880 (2016)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bosek, B., Grytczuk, J., Trotter, W.T.: Local dimension is unbounded for planar posets. arXiv:1712.06099

  4. 4.

    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. (2) 41, 161–166 (1950)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Dushnik, B.: Concerning a certain set of arrangements. Proc. Amer. Math. Soc. 1, 788–796 (1950)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Dushnik, B., Miller, E.W.: Partially ordered sets. Amer. J. Math. 63, 600–610 (1941)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Felsner, S., Mészáros, T., Micek, P.: Boolean dimension and Tree-width. arXiv:1707.06114

  8. 8.

    Felsner, S., Trotter, W.T., Wiechert, V.: The dimension of posets with planar cover graphs. Graphs Combin. 31, 927–939 (2015)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Gambosi, G., Nešetřil, J., Talamo, M.: Posets, Boolean representations and quick path searching. In: Automata, Languages and Programming, 14th International Colloquium, ICALP87, Proceedings, Lecture Note Series in Computer Science, vol. 267, pp 404–424 (1987)

  10. 10.

    Gambosi, G., Nešetřil, J., Talamo, M.: On locally presented posets. Theoret. Comput. Sci. 70, 251–260 (1990)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory, 2nd edn. Wiley, New York (1990)

    Google Scholar 

  12. 12.

    Hiraguchi, T.: On the dimension of orders. Sci. Rep. Kanazawa Univ. 4, 1–20 (1955)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Hoşten, S., Morris, W.D.: The dimension of the complete graph. Discrete Math. 201, 133–139 (1998)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Howard, D.M., Streib, N., Trotter, W.T., Walczak, B., Wang, R.: Dimension of posets with planar cover graphs excluding two long incomparable chains. J. Combin. Theory Ser. A 164, 1–23 (2019)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Joret, G., Micek, P., Milans, K., Trotter, W.T., Walczak, B., Wang, R.: Tree-width and dimension. Combinatorica 36, 431–450 (2016)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Joret, G., Micek, P., Ossona de Mendez, P., Wiechert, V.: Nowhere dense graph classes and dimension. arXiv:1708.05424

  17. 17.

    Joret, G., Micek, P., Wiechert, V.: Planar posets have dimension at most linear in their height. SIAM J. Discrete Math. 34(1), 2754–2790 (2017)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Joret, G., Micek, P., Trotter, W.T., Wang, R., Wiechert, V.: On the dimension of posets with cover graphs of tree-width 2. Order 34, 185–234 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Kelly, D.: On the dimension of partially ordered sets. Discrete Math. 35, 135–156 (1981)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Kim, J., Martin, R.R., Masařík, T., Shull, W., Smith, H., Uzzell, A., Wang, Z.: On difference graphs and the local dimension of posets. arXiv:1803.08641

  21. 21.

    Kimble, R.J.: Extremal Problems in Dimension Theory for Partially Ordered Sets, Ph.D. Thesis, Massachusetts Institute of Technology (1973)

  22. 22.

    Kimble, R.J.: Personal communication

  23. 23.

    Kleitman, D.J., Markovsky, G.: On Dedekind’s problem: The number of isotone Boolean functions, II. Trans. Amer. Math. Soc. 213, 373–390 (1975)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Kozik, J., Krawczyk, T., Micek, P., Trotter, W.T.: Personal communication

  25. 25.

    Mészáros, T., Micek, P., Trotter, W.T.: Boolean dimension, components and blocks. arXiv:1801.00288

  26. 26.

    Micek, P., Walczak, B.: Personal communication

  27. 27.

    Milliken, K.: A Ramsey theorem for trees. J. Combin. Theory Ser. A 26, 215–237 (1979)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Nešetřil, J., Pudlák, P.: A Note on Boolean dimension of posets, irregularities of partitions. Algorithms Combin. 8, 137–140 (1989)

    MATH  Google Scholar 

  29. 29.

    Spencer, J.: Minimal scrambling sets of simple orders. Acta Math. Hungar. 22, 349–353 (1972)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Streib, N., Trotter, W.T.: Dimension and height for posets with planar cover graphs. Europ. J. Comb. 35, 474–489 (2014)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Trotter, W.T.: Irreducible posets with arbitrarily large height exist. J. Combin. Theory Ser. A 17, 337–344 (1974)

    Article  Google Scholar 

  32. 32.

    Trotter, W.T.: Inequalities in dimension theory for posets. Proc. Amer. Math. Soc. 47, 311–316 (1975)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns Hopkins University Press, Baltimore (1992)

    Google Scholar 

  34. 34.

    Trotter, W.T., Moore, J.I.: The dimension of planar posets. J. Combin. Theory Ser. B 21, 51–67 (1977)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Trotter, W.T., Walczak, B.: Boolean dimension and local dimension. Elec. Notes Discret. Math. 61, 1047–1053 (2017)

    Article  Google Scholar 

  36. 36.

    Trotter, W.T., Wang, R.: Planar posets, dimension, breadth and the number of minimal elements. Order 33, 333–346 (2016)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Ueckerdt, T.: Personal communication

  38. 38.

    Trotter, W.T., Walczak, B., Wang, R.: Dimension and Cut Vertices: An Application of Ramsey Theory, Connections in Discrete Mathematics. In: Butler, S. et al. (eds.) , pp 187–199. Cambridge University Press (2018)

Download references


Our work has benefited considerably through collaboration, and a touch of competition, with our colleagues Stefan Felsner, Gwenaël Joret, Tamás Mészáros, Piotr Micek and Bartosz Walczak. Smith was supported in part by NSF-DMS grant 1344199.

Author information



Corresponding author

Correspondence to Heather C. Smith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Much of the research done by Barrera-Cruz, Smith, and Taylor was completed while they were affiliated with the Georgia Institute of Technology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrera-Cruz, F., Prag, T., Smith, H.C. et al. Comparing Dushnik-Miller Dimension, Boolean Dimension and Local Dimension. Order 37, 243–269 (2020).

Download citation


  • Dimension
  • Boolean dimension
  • Local dimension
  • Tree-width
  • Path-width
  • Ramsey theory