Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Order
  3. Article

A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries

  • Open access
  • Published: 10 June 2019
  • volume 37, pages 151–171 (2020)
Download PDF

You have full access to this open access article

Order Aims and scope Submit manuscript
A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries
Download PDF
  • Johannes Marti1 &
  • Riccardo Pinosio2 
  • 389 Accesses

  • 3 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

Abstract

In this paper we present a duality between nonmonotonic consequence relations and well-founded convex geometries. On one side of the duality we consider nonmonotonic consequence relations satisfying the axioms of an infinitary variant of System P, which is one of the most studied axiomatic systems for nonmonotonic reasoning, conditional logic and belief revision. On the other side of the duality we consider well-founded convex geometries, which are infinite convex geometries that generalize well-founded posets. Since there is a close correspondence between nonmonotonic consequence relations and path independent choice functions one can view our duality as an extension of an existing duality between path independent choice functions and convex geometries that has been developed independently by Koshevoy and by Johnson and Dean.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Adaricheva, K., Gorbunov, V., Tumanov, V.I.: Join-semidistributive lattices and convex geometries. Adv. Math. 173.1, 1–49 (2003)

    Article  MathSciNet  Google Scholar 

  2. Adaricheva, K., Nation, J.B.: A class of infinite convex geometries. Electron. J. Comb. 23, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Adaricheva, K., Nation, J.B.: Convex geometries. In: Grätzer, G., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications, pp 153–179. Springer (2016)

  4. Baltag, A., Smets, S.: Conditional doxastic models: A qualitative approach to dynamic belief revision. Electron. Notes Theor. Comput. Sci. 165, 5–21 (2006)

    Article  MathSciNet  Google Scholar 

  5. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Logica 99.1-3, 61–92 (2011)

    Article  MathSciNet  Google Scholar 

  6. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49.1, 49–80 (2004)

    Article  MathSciNet  Google Scholar 

  7. Burgess, J.: Quick completeness proofs for some logics of conditionals. Notre Dame J. Formal Logic 22.1, 76–84 (1981)

    Article  MathSciNet  Google Scholar 

  8. Danilov, V.I., Koshevoy, G.A.: A new characterization of the path independent choice functions. Math. Soc. Sci. 51.2, 238–245 (2006)

    Article  MathSciNet  Google Scholar 

  9. Danilov, V.I., Koshevoy, G.A., Savaglio, E.: Hyper-relations, choice functions, and orderings of opportunity sets. Social Choice Welfare 45.1, 51–69 (2015)

    Article  MathSciNet  Google Scholar 

  10. Paul, H.: Edelman: Abstract convexity and meet-distributive lattices. In: Rival, I. (ed.) Combinatorics and Ordered Sets, vol. 57, pp 127–150. Contemporary Mathematics (1986)

  11. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geometriae Dedicata 19.3, 247–270 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Edelman, P.H., Saks, M.E.: Combinatorial representation and convex dimension of convex geometries. Order 5.1, 23–32 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Girard, P.: From onions to broccoli: Generalizing Lewis’ counterfactual logic. J. Appl. Non-Classical Logics 17.2, 213–229 (2007)

    Article  MathSciNet  Google Scholar 

  14. Girlando, M., et al.: Standard Sequent Calculi for Lewis’ Logics of Counterfactuals. Logics in Artificial Intelligence. In: Michael, L., Kakas, A. (eds.) , pp 272–287. Springer (2016)

  15. Grove, A.: Two modellings for theory change. J. Philos. Logic 17.2, 157–170 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Paul, R.: Halmos: Lectures on Boolean Algebras. Springer (1974)

  17. Joseph, Y.: Halpern: Reasoning About Uncertainty. MIT Press (2003)

  18. Johnson, M.R., Dean, R.A.: Locally complete path independent choice functions and their lattices. Math. Soc. Sci. 42.1, 53–87 (2001)

    Article  MathSciNet  Google Scholar 

  19. Kashiwabara, K., Nakamura, M., Okamoto, Y.: The affine representation theorem for abstract convex geometries. Comput. Geom. 30.2, 129–144 (2005)

    Article  MathSciNet  Google Scholar 

  20. Korte, B., Lovász, L.: Homomorphisms and Ramsey properties of antimatroids. Discret. Appl. Math. 15.2, 283–290 (1986)

    Article  MathSciNet  Google Scholar 

  21. Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer (1991)

  22. Koshevoy, G.A.: Choice functions and abstract convex geometries. Math. Soc. Sci. 38.1, 35–44 (1999)

    Article  MathSciNet  Google Scholar 

  23. Kratzer, A.: Partition and revision: The semantics of counterfactuals. J. Philos. Logic 10.2, 201–216 (1981)

    MathSciNet  MATH  Google Scholar 

  24. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44.1–2, 167–207 (1990)

    Article  MathSciNet  Google Scholar 

  25. Lewis, D.: Counterfactuals. Blackwell (1973)

  26. Marti, J., Pinosio, R.: A game semantics for system. Studia Logica 104.6, 1119–1144 (2016)

    Article  MathSciNet  Google Scholar 

  27. Marti, J., Pinosio, R.: Topological semantics for conditionals. In: Punčochár, V., Švarný, P. (eds.) The Logica Yearbook 2013. College Publications (2014)

  28. Monjardet, B., Raderanirina, V.: The duality between the anti-exchange closure operators and the path independent choice operators on a finite Set. Math. Soc. Sci. 41.2, 131–150 (2001)

    Article  MathSciNet  Google Scholar 

  29. Monjardet, B.: A use for frequently rediscovering a concept. Order 1.4, 415–417 (1985)

    Article  MathSciNet  Google Scholar 

  30. Negri, S., Olivetti, N.: A sequent calculus for preferential conditional logic based on neighbourhood semantics. In: De Nivelle, H. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, pp 115–134. Springer (2015)

  31. Nute, D.: Topics in Conditional Logic. Reidel (1980)

  32. Plott, C.R.: Path independence, rationality, and social choice. In: Econometrica, pp. 1075–1091 (1973)

  33. Pozzato, G.L.: Conditional and preferential logics: Proof methods and theorem proving, vol. 208. Frontiers in Artificial Intelligence and Applications. IOS Press (2010)

  34. Richter, M., Rogers, L.G.: Embedding convex geometries and a bound on convex dimension. Discret. Math. 340.5, 1059–1063 (2017)

    Article  MathSciNet  Google Scholar 

  35. Schröder, L., Pattinson, D., Hausmann, D.: Optimal tableaux for conditional logics with cautious monotonicity. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings ECAI 2010. Frontiers in Artificial Intelligence and Applications, vol. 215, pp 707–712. IOS Press (2010)

  36. Robert, C.: Stalnaker: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, pp 98–112. Blackwell (1968)

  37. Touazi, F, Cayrol, C., Dubois, D.: Possibilistic reasoning with partially ordered beliefs. J. Appl. Logic 13.4, 770–798 (2015)

    Article  MathSciNet  Google Scholar 

  38. van de Vel, M.L.J.: Theory of Convex Structures. Elsevier (1993)

  39. Veltman, F.: Logics for Conditionals. PhD thesis University of Amsterdam (1985)

  40. Veltman, F.: Prejudices, presuppositions, and the theory of counterfactuals. In: Groenendijk, J., Stokhof, M. (eds.) Amsterdam Papers in Formal Grammar, vol. 1, pp 248–282 (1976)

  41. Wahl, N.: Antimatroids of finite character. J. Geom. 70.1, 168–175 (2001)

    Article  MathSciNet  Google Scholar 

  42. Wolter, F.: The algebraic face of minimality. Logic Logical Philos. 6.0, 225–240 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research partially supported by EPSRC grant EP/N015843/1.

Author information

Authors and Affiliations

  1. University of Strathclyde, Glasgow, UK

    Johannes Marti

  2. University of Amsterdam, Amsterdam, Netherlands

    Riccardo Pinosio

Authors
  1. Johannes Marti
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Riccardo Pinosio
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Johannes Marti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marti, J., Pinosio, R. A Discrete Duality Between Nonmonotonic Consequence Relations and Convex Geometries. Order 37, 151–171 (2020). https://doi.org/10.1007/s11083-019-09497-0

Download citation

  • Received: 04 May 2017

  • Accepted: 27 May 2019

  • Published: 10 June 2019

  • Issue Date: April 2020

  • DOI: https://doi.org/10.1007/s11083-019-09497-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Convex geometries
  • Antimatroids
  • Nonmonotonic consequence relations
  • Conditional logic
  • Path independent choice functions
  • Duality
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature