A Simple Upper Bound on the Number of Antichains in [t]n


In this paper for t > 2 and n > 2, we give a simple upper bound on a ([t]n), the number of antichains in chain product poset [t]n. When t = 2, the problem reduces to classical Dedekind’s problem posed in 1897 and studied extensively afterwards. However few upper bounds have been proposed for t > 2 and n > 2. The new bound is derived with straightforward extension of bracketing decomposition used by Hansel for bound \(3^{n\choose \lfloor n/2\rfloor }\) for classical Dedekind’s problem. To our best knowledge, our new bound is the best when \({\Theta }\left (\left (\log _{2}t\right )^{2}\right )=\frac {6t^{4}\left (\log _{2}\left (t + 1\right )\right )^{2}}{\pi \left (t^{2}-1\right )\left (2t-\frac {1}{2}\log _{2}\left (\pi t\right )\right )^{2}}<n\) and \(t=\omega \left (\frac {n^{1/8}}{\left (\log _{2}n\right )^{3/4}}\right )\).

This is a preview of subscription content, log in to check access.


  1. 1.

    Carroll, T., Cooper, J., Tetali, P.: Counting antichains and linear extensions in generalizations of the boolean lattice (2009)

  2. 2.

    Dedekind, R.: Über Zerlegungen Von Zahlen Durch Ihre Grössten Gemeinsamen Theiler. In: Fest-Schrift Der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pp. 1–40. Springer (1897)

    Google Scholar 

  3. 3.

    Greene, C., Kleitman, D.J.: Strong versions of sperner’s theorem. Journal of Combinatorial Theory, Series A 20(1), 80–88 (1976)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Hansel, G.: Sur le nombre des fonctions booléennes monotones de n variables. Comptes rendus hebdomadaires des séances de l’académie des sciences. Série A 262(20), 1088 (1966)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Kahn, J.: Entropy, independent sets and antichains: a new approach to dedekind’s problem. Proc. Am. Math. Soc. 130(2), 371–378 (2002)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Katona, G.: A generalization of some generalizations of sperner’s theorem. Journal of Combinatorial Theory, Series B 12(1), 72–81 (1972)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Kleitman, D.J., Markowsky, G.: On dedekind’s problem: the number of isotone boolean functions. ii. Trans. Am. Math. Soc. 213, 373–390 (1975)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Korshunov, A.D.: On the number of monotone boolean menge. Problemy kibernetiki 38, 5–109 (1981)

    MATH  Google Scholar 

  9. 9.

    Mattner, L., Roos, B.: Maximal probabilities of convolution powers of discrete uniform distributions. Statist. Probab. Lett. 78(17), 2992–2996 (2008)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Moshkovitz, G., Shapira, A.: Ramsey theory, integer partitions and a new proof of the erdös–szekeres theorem. Adv. Math. 262, 1107–1129 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Pippenger, H.: Entropy and enumeration of boolean functions. IEEE Trans. Inf. Theory 45(6), 2096–2100 (1999)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sapozhenko, A.A.: The number of antichains in ranked partially ordered sets. Diskretnaya Matematika 1(1), 74–93 (1989)

    MathSciNet  Google Scholar 

Download references


The author would like to thank the anonymous reviewers for their valuable comments and suggestions.

Author information



Corresponding author

Correspondence to Shen-Fu Tsai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, S. A Simple Upper Bound on the Number of Antichains in [t]n. Order 36, 507–510 (2019). https://doi.org/10.1007/s11083-018-9480-5

Download citation


  • Partially ordered set
  • Dedekind’s problem
  • Monotonic Boolean function