Advertisement

Order

pp 1–12 | Cite as

Testing for a Semilattice Term

  • Ralph Freese
  • J. B. Nation
  • Matt Valeriote
Article
  • 11 Downloads

Abstract

This paper investigates the computational complexity of deciding if a given finite algebra is an expansion of a semilattice. In general this problem is known to be EXP-TIME complete, and we show that even for idempotent algebras, this problem remains hard. This result is in contrast to a series of results that show that similar decision problems turn out to be tractable.

Keywords

Semilattice Computational complexity Maltsev condition Idempotent algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The first author was supported by the National Science Foundation under grant No. 1500235 and the third author was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

References

  1. 1.
    Baker, K.A.: Congruence-distributive polynomial reducts of lattices. Algebra Univers. 9(1), 142–145 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barto, L., Krokhin, A., Willard, R.: Polymorphisms, and how to use them. In: Krokhin, A., Zivny, S. (eds.) The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pp. 1–44. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2017)Google Scholar
  3. 3.
    Bergman, C.: Universal Algebra, Volume 301 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton (2012). Fundamentals and selected topicsGoogle Scholar
  4. 4.
    Bergman, C., Juedes, D., Slutzki, G.: Computational complexity of term-equivalence. Int. J. Algebra Comput. 9(1), 113–128 (1999)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, Volume 78 of Graduate Texts in Mathematics. Springer, New York-Berlin (1981)MATHGoogle Scholar
  6. 6.
    Freese, R., Valeriote, M.A.: On the complexity of some Maltsev conditions. Int. J. Algebra Comput. 19(1), 41–77 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Freese, R., Kiss, E., Valeriote, M.: Universal Algebra Calculator. Available at: www.uacalc.org (2011)
  8. 8.
    Hobby, D., McKenzie, R.: The Structure of Finite Algebras, Volume 76 of Contemporary Mathematics. American Mathematical Society, Providence (1988). Revised edition: 1996CrossRefMATHGoogle Scholar
  9. 9.
    Horowitz, J.: Computational complexity of various Mal’cev conditions. Int. J. Algebra Comput. 23(6), 1521–1531 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21(1968), 110–121 (1967)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kazda, A., Valeriote, M.: Deciding some Maltsev conditions in finnite idempotent algebras. Preprint (2017)Google Scholar
  12. 12.
    Kearnes, K.A., Kiss, E.W.: The shape of congruence lattices. Mem. Am. Math. Soc. 222(1046), viii+ 169 (2013)MathSciNetMATHGoogle Scholar
  13. 13.
    Taylor, W.: Simple equations on real intervals. Algebra Univers. 61(2), 213–226 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Valeriote, M., Willard, R.: Idempotent n-permutable varieties. Bull. Lond. Math. Soc. 46(4), 870–880 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Hawaii at ManoaHonoluluUSA
  2. 2.McMaster UniversityHamiltonCanada

Personalised recommendations