The Face Structure and Geometry of Marked Order Polyhedra

Abstract

We study a class of polyhedra associated to marked posets. Examples of these polyhedra are Gelfand–Tsetlin polytopes and cones, as well as Berenstein–Zelevinsky polytopes—all of which have appeared in the representation theory of semi-simple Lie algebras. The faces of these polyhedra correspond to certain partitions of the underlying poset and we give a combinatorial characterization of these partitions. We specify a class of marked posets that give rise to polyhedra with facets in correspondence to the covering relations of the poset. On the convex geometrical side, we describe the recession cone of the polyhedra, discuss products and give a Minkowski sum decomposition. We briefly discuss intersections with affine subspaces that have also appeared in representation theory and recently in the theory of finite Hilbert space frames.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alexandersson, P.: Gelfand–Tsetlin polytopes and the integer decomposition property. Eur. J. Comb. 54, 1–20 (2016). https://doi.org/10.1016/j.ejc.2015.11.006

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    An, B.H., Cho, Y., Kim, J.S.: On the f-vectors of Gelfand–Cetlin polytopes. ArXiv e-prints. (2016). arXiv:1606.05957

  3. 3.

    Ardila, F., Bliem, T., Salazar, D.: Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes. J. Combinatorial Theor. Ser. A 118(8), 2454–2462 (2011). https://doi.org/10.1016/j.jcta.2011.06.004

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.K.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35(1), 52–73 (2013)

    MathSciNet  Article  Google Scholar 

  5. 5.

    De Loera, A.J., Mcallister, B.T.: Vertices of Gelfand–Tsetlin polytopes. Discrete Comput. Geom. 32(4), 459–470 (2004). https://doi.org/10.1007/s00454-004-1133-3

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Fang, X., Fourier, G.: Marked chain-order polytopes. Eur. J. Comb. 58, 267–282 (2016). https://doi.org/10.1016/j.ejc.2016.06.007

    MathSciNet  Article  Google Scholar 

  7. 7.

    Fourier, G.: Marked poset polytopes: Minkowski sums, indecomposables, and unimodular equivalence. J. Pure and Appl. Algebra 220(2), 606–620 (2016). https://doi.org/10.1016/j.jpaa.2015.07.007

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Geissinger, L.: The face structure of a poset polytope. In: Proceedings of the Third Caribbean conference in combinatorics and computing, pp. 125–133 (1981)

  9. 9.

    Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk SSSR 71, 825–828 (1950)

    MathSciNet  Google Scholar 

  10. 10.

    Gusev, P., Kiritchenko, V., Timorin, V.: Counting vertices in Gelfand–Zetlin polytopes. J. Combinatorial Theor. Ser. A 120(4), 960–969 (2013). https://doi.org/10.1016/j.jcta.2013.02.003

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Haga, T., Pegel, C.: Polytopes of eigensteps of finite equal norm tight frames. Discrete Comput. Geom. 56(3), 727–742 (2016). https://doi.org/10.1007/s00454-016-9799-x

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Hibi, T., Li, N.: Unimodular equivalence of order and chain polytopes. Mathematica Scandinavica 118(1), 5–12 (2016). https://doi.org/10.7146/math.scand.a-23291

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Hibi, T., Li, N., Sahara, Y., Shikama, A.: The numbers of edges of the order polytope and the chain poyltope of a finite partially ordered set. ArXiv e-prints. (2015). arXiv:1508.00187

  14. 14.

    Jochemko, K., Sanyal, R.: Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings. SIAM J. Discret. Math. 28(3), 1540–1558 (2014). https://doi.org/10.1137/130944849

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986). https://doi.org/10.1007/BF02187680

    MathSciNet  Article  Google Scholar 

  16. 16.

    Stanley, R.P., Pitman, J.: A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. Discrete Comput. Geom. 27(4), 603–602 (2002). https://doi.org/10.1007/s00454-002-2776-6

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Pegel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pegel, C. The Face Structure and Geometry of Marked Order Polyhedra. Order 35, 467–488 (2018). https://doi.org/10.1007/s11083-017-9443-2

Download citation

Keywords

  • Marked poset polytopes
  • Gelfand–Tsetlin polytopes
  • Polyhedral geometry
  • Representation theory