Order

pp 1–22 | Cite as

The Face Structure and Geometry of Marked Order Polyhedra

Article
  • 4 Downloads

Abstract

We study a class of polyhedra associated to marked posets. Examples of these polyhedra are Gelfand–Tsetlin polytopes and cones, as well as Berenstein–Zelevinsky polytopes—all of which have appeared in the representation theory of semi-simple Lie algebras. The faces of these polyhedra correspond to certain partitions of the underlying poset and we give a combinatorial characterization of these partitions. We specify a class of marked posets that give rise to polyhedra with facets in correspondence to the covering relations of the poset. On the convex geometrical side, we describe the recession cone of the polyhedra, discuss products and give a Minkowski sum decomposition. We briefly discuss intersections with affine subspaces that have also appeared in representation theory and recently in the theory of finite Hilbert space frames.

Keywords

Marked poset polytopes Gelfand–Tsetlin polytopes Polyhedral geometry Representation theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandersson, P.: Gelfand–Tsetlin polytopes and the integer decomposition property. Eur. J. Comb. 54, 1–20 (2016). https://doi.org/10.1016/j.ejc.2015.11.006 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    An, B.H., Cho, Y., Kim, J.S.: On the f-vectors of Gelfand–Cetlin polytopes. ArXiv e-prints. (2016). arXiv:1606.05957
  3. 3.
    Ardila, F., Bliem, T., Salazar, D.: Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes. J. Combinatorial Theor. Ser. A 118(8), 2454–2462 (2011). https://doi.org/10.1016/j.jcta.2011.06.004 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.K.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35(1), 52–73 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    De Loera, A.J., Mcallister, B.T.: Vertices of Gelfand–Tsetlin polytopes. Discrete Comput. Geom. 32(4), 459–470 (2004). https://doi.org/10.1007/s00454-004-1133-3 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fang, X., Fourier, G.: Marked chain-order polytopes. Eur. J. Comb. 58, 267–282 (2016). https://doi.org/10.1016/j.ejc.2016.06.007 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fourier, G.: Marked poset polytopes: Minkowski sums, indecomposables, and unimodular equivalence. J. Pure and Appl. Algebra 220(2), 606–620 (2016). https://doi.org/10.1016/j.jpaa.2015.07.007 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Geissinger, L.: The face structure of a poset polytope. In: Proceedings of the Third Caribbean conference in combinatorics and computing, pp. 125–133 (1981)Google Scholar
  9. 9.
    Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk SSSR 71, 825–828 (1950)MathSciNetGoogle Scholar
  10. 10.
    Gusev, P., Kiritchenko, V., Timorin, V.: Counting vertices in Gelfand–Zetlin polytopes. J. Combinatorial Theor. Ser. A 120(4), 960–969 (2013). https://doi.org/10.1016/j.jcta.2013.02.003 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Haga, T., Pegel, C.: Polytopes of eigensteps of finite equal norm tight frames. Discrete Comput. Geom. 56(3), 727–742 (2016). https://doi.org/10.1007/s00454-016-9799-x MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Hibi, T., Li, N.: Unimodular equivalence of order and chain polytopes. Mathematica Scandinavica 118(1), 5–12 (2016). https://doi.org/10.7146/math.scand.a-23291 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hibi, T., Li, N., Sahara, Y., Shikama, A.: The numbers of edges of the order polytope and the chain poyltope of a finite partially ordered set. ArXiv e-prints. (2015). arXiv:1508.00187
  14. 14.
    Jochemko, K., Sanyal, R.: Arithmetic of marked order polytopes, monotone triangle reciprocity, and partial colorings. SIAM J. Discret. Math. 28(3), 1540–1558 (2014). https://doi.org/10.1137/130944849 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986). https://doi.org/10.1007/BF02187680 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Stanley, R.P., Pitman, J.: A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. Discrete Comput. Geom. 27(4), 603–602 (2002). https://doi.org/10.1007/s00454-002-2776-6 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für Algebra, Zahlentheorie und Diskrete MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations