Skip to main content
Log in

A Heyting Algebra on Dyck Paths of Type A and B

  • Published:
Order Aims and scope Submit manuscript

Abstract

In this article we investigate the lattices of Dyck paths of type A and B under dominance order, and explicitly describe their Heyting algebra structure. This means that each Dyck path of either type has a relative pseudocomplement with respect to some other Dyck path of the same type. While the proof that this lattice forms a Heyting algebra is quite straightforward, the explicit computation of the relative pseudocomplements using the lattice-theoretic definition is quite tedious. We give a combinatorial description of the Heyting algebra operations join, meet, and relative pseudocomplement in terms of height sequences, and we use these results to derive formulas for pseudocomplements and to characterize the regular elements in these lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, D.: Generalized noncrossing partitions and combinatorics of coxeter groups. Memoirs Am. Math. Soc. 202 (2009)

  2. Balbes, R., Dwinger, P.: Distributive lattices, 1st edn. University of Missouri Press, Columbia (1974)

    MATH  Google Scholar 

  3. Barcucci, E., Bernini, A., Ferrari, L., Poneti, M.: A distributive lattice structure connecting Dyck paths, noncrossing partitions and 312-avoiding permutations. Order 22, 311–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barr, M., Wells, C.: Category theory for computing science, 3rd edn. (1998). Available at http://www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf

    MATH  Google Scholar 

  5. Bennett, M.K., Birkhoff, G.: Two families of newman lattices. Algebra Univers. 32, 115–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birkhoff, G.: Rings of sets. Duke Math. J. 3, 443–454 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blyth, T.S.: Lattices and ordered algebraic structures, 1st edn. Springer, London (2005)

    MATH  Google Scholar 

  8. Cautis, S., Jackson, D.M.: The matrix of chromatic joins and the Temperley–Lieb algebra. J. Comb. Theory (Series B) 89, 109–155 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deutsch, E.: Dyck path enumeration. Discret. Math. 204, 167–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferrari, L.: Unimodality and Dyck paths. J. Comb. Math. Comb. Comput. 87 (2013)

  11. Ferrari, L.: Dyck algebras, interval temporal logic and posets of intervals (2015). arXiv:1503.04991

  12. Ferrari, L., Munarini, E.: Lattices of paths: representation theory and valuations. J. Comb. 2, 265–291 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Ferrari, L., Munarini, E.: Enumeration of edges in some lattices of paths. Journal of Integer Sequences 17 (2014)

  14. Ferrari, L., Munarini, E.: Enumeration of saturated chains in Dyck lattices. Adv. Appl. Math. 62, 118–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferrari, L., Pinzani, R.: Lattices of lattice paths. J. Stat. Plan. Infer. 135, 77–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gobet, T.: Noncrossing partitions, fully commutative elements and bases of the Temperley–Lieb algebra. J. Knot Theory Ramifications 25, 27 (2016)

  17. Gobet, T., Williams, N.: Noncrossing partitions and Bruhat order. Eur. J. Comb. 53, 8–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nilsson, J.: Enumeration of basic ideals in type B Lie algebras. J. Integer Sequences 15 (2012)

  19. Proctor, R.A.: Bruhat lattices, plane partition generating functions, and minuscule representations. Eur. J. Comb. 5, 331–350 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stanley, R.P.: The fibonacci lattice. Fibonacci Quarterly 13, 215–232 (1975)

    MathSciNet  MATH  Google Scholar 

  21. Stanley, R.P.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM Journal on Algebraic Discrete Methods 1, 168–184 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stanley, R.P.: Enumerative combinatorics, vol. 2. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  23. Stump, C.: More bijective catalan combinatorics on permutations and signed permutations. J. Comb. 4, 419–447 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Mühle.

Additional information

This work was funded by the FWF Research Grant No. Z130-N13, as well as a Public Grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” Program (Reference: ANR-10-LABX-0098), and Digiteo project PAAGT (Nr. 2015-3161D).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mühle, H. A Heyting Algebra on Dyck Paths of Type A and B . Order 34, 327–348 (2017). https://doi.org/10.1007/s11083-016-9403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-016-9403-2

Keywords

Navigation