, Volume 33, Issue 1, pp 121–132 | Cite as

Conservative Median Algebras and Semilattices

  • Miguel Couceiro
  • Jean-Luc MarichalEmail author
  • Bruno Teheux


We characterize conservative median algebras and semilattices by means of forbidden substructures and by providing their representation as chains. Moreover, using a dual equivalence between median algebras and certain topological structures, we obtain descriptions of the median-preserving mappings between products of finitely many chains.


Median algebra Median homomorphism Median semilattice Forbidden substructure Median graph Conservative median algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avann, S.P.: Metric ternary distributive semi-lattices. Proc. Am. Math. Soc. 12, 407–414 (1961)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bandelt, H.J., Hedlíková, J.: Median algebras. Discret. Math. 45, 1–30 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Birkhoff, G., Kiss, S.A.: A ternary operation in distributive lattices. Bull. Am. Math. Soc. 53, 749–752 (1947)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Clark, D.M., Davey, B.A.: Natural dualities for the working algebraist, volume 57 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Davey, B.A., Priestley, H.A.: Introduction to lattices and order, second edition. Cambridge University Press, New York (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Davey, B. M., Werner, H.: Dualities and equivalences for varieties of algebras. In: Contributions to lattice theory (Szeged, 1980), volume 33 of Colloquia Mathematica Societatis János Bolyai, pp 101–275, North-Holland, Amsterdam (1983)Google Scholar
  7. 7.
    Grätzer, G.: General lattice theory. Birkhäuser Verlag, Basel, second edition (1998). New appendices by the author with B.A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H.A. Priestley, H. Rose, E.T. Schmidt, S.E. Schmidt, F. Wehrung and R. WilleGoogle Scholar
  8. 8.
    Grau, A.A.: Ternary Boolean algebra. Bull. Am. Math. Soc. (May, 1944) 567–572 (1947)Google Scholar
  9. 9.
    Isbell, J.R.: Median algebra. Trans. Am. Math. Soc. 260(2), 319–362 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Mitschke, A.: Near unanimity identities and congruence distributivity in equational classes. Algebra Universalis 8(1), 29–32 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Nieminen, J.: The ideal structure of simple ternary algebras. Colloq. Math. 40 (1), 23–29 (1978/79)Google Scholar
  12. 12.
    Sholander, M.: Trees, lattices, order, and betweenness. Proc. Am. Math. Soc. 3 (3), 369–381 (1952)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sholander, M.: Medians, lattices, and trees. Proc. Am. Math. Soc. 5(5), 808–812 (1954)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Werner, H.: A duality for weakly associative lattices. In: Finite algebra and multiple-valued logic (Szeged, 1979), volume 28 of Colloquia Mathematica Societatis János Bolyai, pp 781–808, North-Holland, Amsterdam (1981)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Miguel Couceiro
    • 1
  • Jean-Luc Marichal
    • 2
    Email author
  • Bruno Teheux
    • 2
  1. 1.LORIA (CNRS - Inria Nancy Grand Est - Université de Lorraine)Vandoeuvre-lès-NancyFrance
  2. 2.Mathematics Research Unit, FSTCUniversity of LuxembourgLuxembourgLuxembourg

Personalised recommendations