Skip to main content
Log in

On a Subposet of the Tamari Lattice

  • Published:
Order Aims and scope Submit manuscript

Abstract

We explore some of the properties of a subposet of the Tamari lattice introduced by Pallo, which we call the comb poset. We show that a number of binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooper, B., Rowland, E., Zeilberger, D.: Toward a language theoretic proof of the Four Color Theorem (2010). arXiv:1006.1324v1 [math.CO]

  2. Edelman, P.H.: Tableaux and chains in a new partial order of \(S\sb n\). J. Combin. Theory Ser. A 51(2):181–204 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Friedman, H., Tamari, D.: Problèmes d’associativité: une structure de treillis finis induite par une loi demi-associative. J. Combinatorial Theory 2, 215–242 (1967)

    Article  MathSciNet  Google Scholar 

  4. Huang, S., Tamari, D.: Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law. J. Combin. Theory Ser. A 13, 7–13 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kauffman, L.H.: Map coloring and the vector cross product. J. Combin. Theory Ser. B 48(2), 145–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Knuth, D.E.: The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley Publishing Company, Reading, Massachusetts (1973)

    Google Scholar 

  7. Pallo, J.M.: Enumerating, ranking and unranking binary trees. Comput. J. 29(2), 171–175 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pallo, J.M.: Right-arm rotation distance between binary trees. Inf. Process. Lett. 87(4), 173–177 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1(3), 647–681 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Stanley, R.P.: Enumerative Combinatorics, Volume 1. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  11. Stanley, R.P.: Enumerative Combinatorics, Volume 2. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  12. Tamari, D.: Associativity theory and the theory of lists. Their applications from abstract algebra to the four-colour-map problem. In: Proceedings of the Seventeenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, Fla., 1986), vol. 54, pp. 39–53 (1986)

  13. Whitney, H.: A theorem on graphs. Ann. Math. (2) 32(2), 378–390 (1931)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian A. Csar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csar, S.A., Sengupta, R. & Suksompong, W. On a Subposet of the Tamari Lattice. Order 31, 337–363 (2014). https://doi.org/10.1007/s11083-013-9305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-013-9305-5

Keywords

Navigation