Advertisement

Order

, Volume 31, Issue 3, pp 337–363 | Cite as

On a Subposet of the Tamari Lattice

  • Sebastian A. CsarEmail author
  • Rik Sengupta
  • Warut Suksompong
Article
  • 140 Downloads

Abstract

We explore some of the properties of a subposet of the Tamari lattice introduced by Pallo, which we call the comb poset. We show that a number of binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman.

Keywords

Tamari lattice Poset Four Color Theorem Semilattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooper, B., Rowland, E., Zeilberger, D.: Toward a language theoretic proof of the Four Color Theorem (2010). arXiv:1006.1324v1 [math.CO]
  2. 2.
    Edelman, P.H.: Tableaux and chains in a new partial order of \(S\sb n\). J. Combin. Theory Ser. A 51(2):181–204 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Friedman, H., Tamari, D.: Problèmes d’associativité: une structure de treillis finis induite par une loi demi-associative. J. Combinatorial Theory 2, 215–242 (1967)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Huang, S., Tamari, D.: Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law. J. Combin. Theory Ser. A 13, 7–13 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kauffman, L.H.: Map coloring and the vector cross product. J. Combin. Theory Ser. B 48(2), 145–154 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Knuth, D.E.: The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley Publishing Company, Reading, Massachusetts (1973)Google Scholar
  7. 7.
    Pallo, J.M.: Enumerating, ranking and unranking binary trees. Comput. J. 29(2), 171–175 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pallo, J.M.: Right-arm rotation distance between binary trees. Inf. Process. Lett. 87(4), 173–177 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1(3), 647–681 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Stanley, R.P.: Enumerative Combinatorics, Volume 1. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  11. 11.
    Stanley, R.P.: Enumerative Combinatorics, Volume 2. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Tamari, D.: Associativity theory and the theory of lists. Their applications from abstract algebra to the four-colour-map problem. In: Proceedings of the Seventeenth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, Fla., 1986), vol. 54, pp. 39–53 (1986)Google Scholar
  13. 13.
    Whitney, H.: A theorem on graphs. Ann. Math. (2) 32(2), 378–390 (1931)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sebastian A. Csar
    • 1
    Email author
  • Rik Sengupta
    • 2
  • Warut Suksompong
    • 2
  1. 1.School of MathematicsUniversity Of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations