Almeida, A.: Canonical extensions and relational representations of lattices with negation. Stud. Log. 91(2), 171–199 (2009)
MathSciNet
MATH
Article
Google Scholar
Banaschewski, B.: Hüllensysteme und Erweiterung von Quasi-Ordnungen. Z. Math. Log. Grundl. Math. 2, 117–130 (1956)
MathSciNet
MATH
Article
Google Scholar
Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion. Arch. Math. (Basel) 18, 369–377 (1967)
MathSciNet
MATH
Article
Google Scholar
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press (2001)
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)
Dedekind, R.: Stetigkeit und Irrationale Zahlen, Authorised Translation Entitled Essays in the Theory of Numbers. Chicago Open Court Publisher (1901)
Dunn, J.M., Hardegree, G.M.: Algebraic Methods in Philosophical Logic. Oxford University Press, New York (2001)
MATH
Google Scholar
Dunn, J.M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symb. Log. 70(3), 713–740 (2005)
MathSciNet
MATH
Article
Google Scholar
Erné, M.: Adjunctions and standard constructions for partially ordered sets. Contrib. Gen. Algebra 2, 77–106 (1983)
Google Scholar
Erné, M.: Adjunctions and Galois connections: origins, history and development. In: Denecke, K., et al. (eds.) Galois Connections and Applications, pp. 1–138. Kluwer, Boston, MA (2004)
Google Scholar
Gehrke, M.: Generalized Kripke frames. Stud. Log. 84, 241–275 (2006)
MathSciNet
MATH
Article
Google Scholar
Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 238, 345–371 (2001)
MathSciNet
MATH
Article
Google Scholar
Gehrke, M., Harding, J., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131, 65–102 (2005)
MathSciNet
MATH
Article
Google Scholar
Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Jpn. 40, 207–215 (1994)
MATH
Google Scholar
Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal logic. Ann. Pure Appl. Logic 131, 65–102 (2005)
MathSciNet
MATH
Article
Google Scholar
Gehrke, M., Priestley, H.A.: Duality for double quasioperator algebras via their canonical extensions. Stud. Log. 68, 31–68 (2007)
MathSciNet
Article
Google Scholar
Gehrke, M., Priestley, H.A.: Canonical extensions and completions of posets and lattices. Rep. Math. Log. 48, 133–152 (2008)
MathSciNet
Google Scholar
Gehrke, M., Jansana, R., Palmigiano, A.: Canonical extensions for congruential logics with the deduction theorem. Ann. Pure Appl. Logic 161, 1502–1519 (2010)
MathSciNet
MATH
Article
Google Scholar
Haim, M.: Duality for lattices with operators: a modal logic approach. Master Dissertation MoL2000-02, ILLC. http://www.illc.uva.nl/Publications/reportlist.php?Series=MoL (2000)
Johnstone, P.T.: Stone Spaces. Cambridge University Press (1982)
Jónsson, B., Tarski, A.: Boolean algebras with operators, I. Am. J. Math. 73, 891–939 (1951)
MATH
Article
Google Scholar
Jónsson, B., Tarski, A.: Boolean algebras with operators, II. Am. J. Math. 74, 127–162 (1952)
MATH
Article
Google Scholar
Hartung, G.: A topological representation of lattices. Algebra Univers. 29, 273–299 (1992)
MathSciNet
MATH
Article
Google Scholar
MacNeille, H.M.: Partially ordered sets. Trans. Am. Math. Soc. 42, 416–460 (1937)
MathSciNet
Article
Google Scholar
Urquhart, A.: A topological representation theory for lattices. Algebra Univers. 8, 45–58 (1978)
MathSciNet
MATH
Article
Google Scholar