Anderson, I.: Some problems in combinatorial number theory. Ph.D. thesis, University of Nottingham, Nottingham, United Kingdom (1967)
Anderson, I.: Combinatorics of Finite Sets. Dover Publications, Mineola, NY (2002). Corrected reprint of the 1989 edition published by Oxford University Press, Oxford
MATH
Google Scholar
Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hung. 16, 447–452 (1965)
MATH
Article
Google Scholar
Engel, K.: Sperner theory. In: Encyclopedia of Mathematics. Cambridge University Press, Cambridge (1997)
Google Scholar
Gansner, E.R.: On the lattice of order ideals of an up-down poset. Discrete Math. 39, 113–122 (1982)
MATH
Article
MathSciNet
Google Scholar
Graham, R.L., Harper, L.H.: Some results on matching in bipartite graphs. SIAM J. Appl. Math. 17, 1017–1022 (1969)
MATH
Article
MathSciNet
Google Scholar
Greene, C., Kleitman, D.J.: The Structure of Sperner k-Families. J. Comb. Theory, Ser. A 20, 80–88 (1976)
MATH
Article
MathSciNet
Google Scholar
Griggs, J.R.: Sufficient conditions for a symmetric chain order. SIAM J. Appl. Math. 32, 807–809 (1977)
MATH
Article
MathSciNet
Google Scholar
Griggs, J.R.: Symmetric Chain Orders, Sperner Theorems, and Loop Matchings. Ph.D. thesis, MIT (1977)
Griggs, J.R.: On chains and Sperner k-families in ranked posets. J. Comb. Theory, Ser. A 28, 156–168 (1980)
MATH
Article
MathSciNet
Google Scholar
Griggs, J.R.: Problems on chain partitions. Discrete Math. 72, 157–162 (1988)
MATH
Article
MathSciNet
Google Scholar
Griggs, J.R.: Matchings, cutsets, and chain partitions in graded posets. Discrete Math. 144, 33–46 (1995)
MATH
Article
MathSciNet
Google Scholar
Harper, L.H.: The morphology of partially ordered sets. J. Comb. Theory, Ser. A 17, 44–58 (1974)
MATH
Article
MathSciNet
Google Scholar
Hsieh, W.N., Kleitman, D.J.: Normalized matching in direct products of partial orders. Stud. Appl. Math. 52, 285–289 (1973)
MATH
MathSciNet
Google Scholar
Hsu, T., Logan, M., Shahriari, S.: Methods for nesting rank 3 normalized matching rank-unimodal posets. Discrete Math. 309(3), 521–531 (2009)
MATH
Article
MathSciNet
Google Scholar
Hsu, T., Logan, M., Shahriari, S., Towse, C.: Partitioning the Boolean lattice into a minimal number of chains of relatively uniform size. Eur. J. Comb. 24, 219–228 (2003)
MATH
Article
MathSciNet
Google Scholar
Hsu, T., Logan, M., Shahriari, S.: The generalized Füredi conjecture holds for finite linear lattices. Discrete Math. 306(23), 3140–3144 (2006)
MATH
Article
MathSciNet
Google Scholar
Kleitman, D.J.: On an extremal property of antichains in partial orders. The LYM property and some of its implications and applications. In: Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), Part 2: Graph Theory; Foundations, Partitions and Combinatorial Geometry, pp. 77–90. Math. Centrum, Amsterdam (1974). Math. Centre Tracts, No. 56
Lubell, D.: A short proof of Sperner’s lemma. J. Comb. Theory 1, 299 (1966)
Article
MathSciNet
Google Scholar
Mešalkin, L.D.: A generalization of Sperner’s theorem on the number of subsets of a finite set. Teor. Veroatn ee Primen. 8, 219–220 (1963)
Google Scholar
Pearsall, A., Shahriari, S.: Chain decompositions of normalized matching posets of rank 2. To appear in the Lecture Notes Series of the Ramanujan Mathematical Society
Perfect, H.: Addendum to: “A short proof of the existence of k-saturated partitions of partially ordered sets” [Adv. in Math. 33(3), 207–211 (1979); MR0546293 (82c:06008)] by M. Saks, Glasgow Math. J. 25(1), 31–33 (1984)
Saks, M.: A short proof of the existence of k-saturated partitions of partially ordered sets. Adv. Math. 33(3), 207–211 (1979)
MATH
Article
MathSciNet
Google Scholar
Shelley, K.: Matchwebs. Master’s thesis, San José State University (2007)
Wang, Y.: Nested chain partitions of LYM posets. Discrete Appl. Math. 145(3), 493–497 (2005)
MATH
Article
MathSciNet
Google Scholar
West, D.B., Harper, L.H., Daykin, D.E.: Some remarks on normalized matching. J. Comb. Theory, Ser. A 35, 301–308 (1983)
MATH
Article
MathSciNet
Google Scholar
Yamamoto, K.: Logarithmic order of free distributive lattice. J. Math. Soc. Jpn. 6, 343–353 (1954)
MATH
Article
Google Scholar