Skip to main content
Log in

On Lattices of Uniformities

  • Published:
Order Aims and scope Submit manuscript

Abstract

We study lattice theoretical properties of lattices of uniformities such as modularity, distributive laws and the existence of (relative) complements. For this the concepts of permutable uniformities (see Definition 3.1) and independent uniformities (see Definition 4.1) are important. Moreover, we show that e.g. the lattice of all lattice uniformities on a lattice L is a closed sublattice of the lattice of all uniformities on L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avallone, A.: Lattice uniformities on orthomodular structures. Math. Slovaca 51, 403–419 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Avallone, A., Vitolo, P.: Decomposition and control theorems in effect algebras. Sci. Math. Japan 58, 1–14 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Avallone, A., Vitolo, P.: Lattice uniformities on effect algebras. Int. J. Theoret. Phys. 44, 793–806 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Avallone, A., Weber, H.: Lattice uniformities generated by filters. J. Math. Anal. Appl. 209, 507–528 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barbieri, G., Weber, H.: A topological approach to the study of fuzzy measures. Functional analysis and economic theory (Samos, 1996), pp. 17–46. Springer, Berlin (1998)

    Google Scholar 

  6. Barbieri, G., Weber, H.: Measures on clans and on MV-algebras. Handbook of measure theory, vol. II, pp. 911–945. North-Holland, Amsterdam (2002)

    Google Scholar 

  7. Basile, A., Traynor, T.: Monotonely Cauchy locally solid topologies. Order 7, 407–416 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Basile, A., Weber, H.: Topological Boolean rings of first and second category. Seperating points for a countable family of measures, Radovi Matematički 2, 113–125 (1986)

    MATH  MathSciNet  Google Scholar 

  9. Birkhoff, G.: Lattice theory. Amer. Math. Soc. Colloquium Publ. 30 (1967)

  10. Bourbaki, N.: General Topology, Part 1. Hermann (1966)

  11. Czech, E.: Topological spaces. Academia, Publishing house of the Czechoslovak Academy of Sciences. Prague (1966)

  12. Dvurećenskij, A., Pulmannová, S.: New trends in Quantum Structures. Mathematics and its Applications, 516. Kluwer Academic Publishers (2000)

  13. Fleischer, I., Traynor, T.: Equivalence of group-valued measures on an abstract lattice. Bull. Acad. Pol. Sci. Sér. Sci. Math. 28, 549–556 (1980)

    MATH  MathSciNet  Google Scholar 

  14. Grätzer, G.: General lattice theory. Pure Appl. Math. 75. Academic (1978)

  15. Graziano, M.G.: Uniformities of Fréchet-Nikodym type on Vitali spaces. Semigroup Forum 61, 91–115 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jarchow, H.: Locally convex spaces. Teubner, Stuttgart (1981)

    MATH  Google Scholar 

  17. Klee, V.: Exotic topologies for linear spaces. General Topology and its Relations to Modern Analysis and Algebra, Proc. Symp. (Prague 1961), Prague (1962)

  18. Kowalsky, H.J.: Beiträge zur topologischen Algebra. Math. Nachr. 11, 143–185 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  19. Palko, V.: Topological difference posets. Math. Slovaca 47, 211–220 (1997)

    MATH  MathSciNet  Google Scholar 

  20. Rowan, W.H.: Algebras with a compatible uniformity. Algebra Univers. 47, 13–43 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Traynor, T.: The Lebesgue decomposition for group valued set functions. Trans. Amer. Math. Soc. 220, 307–319 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Waelbroeck, L.: Topological vector spaces and algebras. Lecture Notes in Mathematics vol. 230. Springer-Verlag, Berlin (1971)

    MATH  Google Scholar 

  23. Warner, S.: Topological Fields. North-Holland Mathemathics studies 157. North-Holland, Amsterdam (1989)

  24. Weber, H.: Zu einem Problem von Kowalsky, H.J., Abh. Braunschweig. Wiss. Gesellsch. 24, 127–134 (1978)

  25. Weber, H.: Unabhängige Topologien, Zerlegung von Ringtopologien. Math. Z. 180, 379–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  26. Weber, H.: Topological Boolean rings. Decomposition of finitely additive set functions Pac. J. Math. 110, 471–495 (1984)

    MATH  Google Scholar 

  27. Weber, H.: Uniform lattices I: a generalization of topological Riesz spaces and topological Boolean rings. Uniform lattices II: order continuity and exhaustivity. Ann. Mat. Pura Appl. 160, 347–370 (1991); 165, 133–158 (1993)

    Google Scholar 

  28. Weber, H.: Lattice uniformities and modular functions on orthomodular lattices. Order 12, 295–305 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Weber, H.: On modular functions. Funct. Approx. 24, 35–52 (1996)

    MATH  Google Scholar 

  30. Weber, H.: Uniform lattices and modular functions. Atti Sem. Mat. Fis. Univ. Modena 47, 159–182 (1999)

    MATH  MathSciNet  Google Scholar 

  31. Weber, H.: Complemented uniform lattices. Topol. Appl. 105, 47–64 (2000)

    Article  MATH  Google Scholar 

  32. Weber, H.: FN-topologies and group-valued measures. Handbook of measure theory, vol. I, pp. 703–743. North-Holland, Amsterdam (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, H. On Lattices of Uniformities. Order 24, 249–276 (2007). https://doi.org/10.1007/s11083-007-9071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-007-9071-3

Keywords

Navigation