Skip to main content
Log in

Double-layered subwavelength metallic slit array for performance-improvement of a fiber-optic silicon Fabry–Perot temperature sensor

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The proof of concept of a polarization-sensitive temperature sensor composed of a silicon Fabry–Perot resonator sandwiched between double-layered subwavelength metallic slit arrays is presented at the operation wavelength of 1.55 µm. Temperature variations can be monitored by measuring the changes in reflection intensity, which is mainly induced by the thermo-optic effect and thermal expansion effect of silicon. For TM-polarized electromagnetic illumination (magnetic field parallel to the slits), the reflection properties of the proposed sensor can be adjusted by proper design of the subwavelength metallic slit arrays’ parameters, such as periodicity, metal film thickness, and slit width. Thus, a temperature sensor with an optimized temperature detection range and sensitivity can be designed according to the application demands. Some sensor designs are presented in this article and the effect of each design parameter on their performance is discussed. The transfer matrix method (TMM) is utilized for the theoretical analysis of the presented designs, the results of which are verified using a commercial FEM solver. The FEM simulation results are in good agreement with the TMM simulation results. The presented designs are compact and low-cost, operate in reflection which simplifies the measurement setup, and rely on the direct monitoring of optical power instead of a complicated spectral scanning. The maximum achieved sensitivity is 0.0225/°C which is higher than the maximum sensitivity for an equivalent silicon Fabry–Perot temperature sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abadla, M.M., Elsayed, H.A., Mehaney, A.: Novel design for the temperature sensing using annular photonic crystals. Silicon 13, 4737–4745 (2021)

    Article  Google Scholar 

  • Beheim, G., Sotomayor, J., Tuma, M.: Laser-annealed thin-film fiber-optic temperature sensor. Proc. SPIE 2045, 217–221 (1993)

    Article  ADS  Google Scholar 

  • Berthold, J.W., Reed, S.E., Sarkis, R.G.: Reflective fiber optic temperature sensor using silicon thin film. Opt. Eng. 30(5), 524–528 (1991)

    Article  ADS  Google Scholar 

  • Biswas, U., Rakshit, J.K., Das, J., et al.: Design of an ultra-compact and highly-sensitive temperature sensor using photonic crystal based single micro-ring resonator and cascaded micro-ring resonator. Silicon 13, 885–892 (2021)

    Article  Google Scholar 

  • Breglio, G., Coppola, G., Cutolo, A., Irace, A., Bellucci, M., Iodice, M.: Temperature optical sensor based on a silicon bi-modal Y branch. Proc. SPIE 4293, 155–161 (2001)

    Article  ADS  Google Scholar 

  • Chang, C., Solgaard, O.: Integrated silicon photonic temperature sensors based on Bragg reflectors with asymmetric fano lineshapes. In: IEEE 9th International Conference on Group IV Photonics (GFP), San Diego, USA (2012a)

  • Chang, C., Solgaard, O.: Asymmetric fano lineshapes in integrated silicon Bragg reflectors. In: Conference on Lasers and Electro-Optics, San Jose, USA (2012b)

  • Chang, C., Solgaard, O.: Fano resonances in integrated silicon Bragg reflectors for sensing applications. Opt. Express 21(22), 27209–27218 (2013)

    Article  ADS  Google Scholar 

  • Cocorullo, G., Della Corte, F., Iodice, M., Rendina, I., Sarro, P.: A temperature all-silicon micro-sensor based on the thermo-optic effect. IEEE Trans. Electron Devices 44(5), 766–774 (1997)

    Article  ADS  Google Scholar 

  • Deng, H., Zhang, W., Yao, J.: High-speed and high-resolution interrogation of a silicon photonic microdisk sensor based on microwave photonic filtering. J. Lightwave Technol. 36(9), 4243–4249 (2018)

    Article  ADS  Google Scholar 

  • Deng, Q., Li, X., Chen, R., Zhou, Z.: Low-cost silicon photonic temperature sensor using broadband light source. In: IEEE 11th International Conference on Group IV Photonics (GFP), Paris, France (2014)

  • Druzhinin, A., Khoverko, Y., Lukianchenko, A., Ostrovskii, I., Shcherban, N.: Temperature sensors based on metal-silicon microstructure for microsystem technology. In: IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Polyana, Ukraine (2019)

  • Garcia-Vidal, F.J., Martin-Moreno, L., Pendry, J.B.: Surfaces with holes in them: new plasmonic metamaetials. J. Opt. A Pure Appl. Opt. 7, S97–S101 (2005)

    Article  ADS  Google Scholar 

  • Ge, Y., Liu, Q., Chang, J., Zhang, J.: Optical fiber sensor for temperature measurement based on silicon thermo-optics effect. Optik 124(24), 6946–6949 (2013)

    Article  ADS  Google Scholar 

  • Guan, X., Wang, X., Frandsen, L.: Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer. Opt. Express 24(15), 16349–16356 (2016)

    Article  ADS  Google Scholar 

  • Guo, L., Liu, Y., Yang, H., Shi, M., Ye, F., Ma, J., Chen, S.: High resolution and stability self-reference plasmonic sensor with metallic grating on multilayered dielectric cavity substrate. IEEE Sens. J. 22(20), 19301–19307 (2022)

    Article  ADS  Google Scholar 

  • https://refractiveindex.info/

  • Hu, J., Mao, S., Zhang, H., Jiang, W.: High-sensitivity silicon few-mode microring resonators for temperature sensing. In: IEEE 14th International Conference on Advanced Infocomm Technology (ICAIT), Chongqing, China (2022)

  • Irace, A., Breglio, G.: All-silicon optical temperature sensor based on multi-mode interference. Opt. Express 11(22), 2807–2812 (2003)

    Article  ADS  Google Scholar 

  • Kasani, S., Curtin, K., Wu, N.: A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics 8(12), 2065–2089 (2019)

    Article  Google Scholar 

  • Kim, H., Yu, M.: Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 24(9), 9501–9510 (2016)

    Article  ADS  Google Scholar 

  • Klimov, N., Mittal, S., Berger, M., Ahmed, Z.: On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt. Lett. 40(17), 3934–3936 (2015a)

    Article  ADS  Google Scholar 

  • Klimov, N., Purdy, T., Ahmed, Z.: Fabry-Perrot cavity-based silicon photonic thermometers with ultra-small footprint and high sensitivity. In: Optical Sensors 2015, Boston, Massachusetts, USA (2015b)

  • Lalanne, P., Hugonin, J.P., Astilean, S., Palamaru, M., Moller, K.D.: One-mode model and airy-like formula for one-dimensional metallic gratings. J. Opt. A Pure Appl. Opt. 2, 48–51 (2000)

    Article  ADS  Google Scholar 

  • Lee, H.S., Kim, G.D., Kim, W.J., Lee, S.S., Lee, W.G.: Tunable-resonator-based temperature sensor interrogated through optical power detection. Appl. Phys. Express 4, 102201 (2011)

    Article  ADS  Google Scholar 

  • Liu, G., Han, M., Hou, W.: High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Perot cavity. Opt. Express 23(6), 7237–7247 (2015)

    Article  ADS  Google Scholar 

  • Liu, Z., et al.: Unambiguous peak identification of a silicon Fabry-Perot temperature sensor assisted with an in-line fiber Bragg grating. J. Lightwave Technol. 37(17), 4210–4215 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Luo, L., Ge, C., Tao, Y., Zhu, L., Zheng, K., Wang, W., Sun, Y., Shen, F., Guo, Z.: High-efficiency refractive index sensor based on the metallic nanoslit arrays with gain-assisted materials. Nanophotonics 5(4), 548–555 (2016)

    Article  Google Scholar 

  • Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander, R.W., Ward, C.A.: Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22(7), 1099–1120 (1983)

    Article  ADS  Google Scholar 

  • Palik, E.D.: Handbook of Optical Constants of Solids. Academic, Orlando (1985)

    Google Scholar 

  • Porto, J.A., Garcia-Vidal, F.J., Pendry, J.B.: Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83(14), 2845–2848 (1999)

    Article  ADS  Google Scholar 

  • Poulopoulos, I., Zervos, C., Syriopoulos, G., Missinne, J., Szaj, M., Avramopoulos, H.: Silicon photonics temperature and refractive index sensor for curing process monitoring in composite material industry. Proc. SPIE 12139, 1213909 (2022)

    Google Scholar 

  • Pruessner, M., Stievater, T., Rabinovich, W.: Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors. Opt. Lett. 32(5), 533–535 (2007)

    Article  ADS  Google Scholar 

  • Qiu, C., Hu, T., Yu, P., Shen, A., Wang, F., Jiang, X.Q., Yang, J.Y.: A temperature sensor based on silicon eye-like microring with sharp asymmetric fano resonance. In: The 9th International Conference on Group IV Photonics (GFP), San Diego, CA, USA, pp .123–125 (2012)

  • Rajasekar, R., Robinson, S.: Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator. Plasmonics 14, 3–15 (2019)

    Article  Google Scholar 

  • Reddy, H., Guler, U., Kildishev, A.V., Boltasseva, A., Shalaev, V.M.: Temperature-dependent optical properties of gold thin films. Opt. Mat. Express 6(9), 2776–2802 (2016)

    Article  ADS  Google Scholar 

  • Schultheis, L., Amstutz, H., Kaufmann, M.: Fiber-optic temperature sensing with ultrathin silicon etalons. Opt. Lett. 13(9), 782–784 (1988)

    Article  ADS  Google Scholar 

  • Shen, J.T., Platzman, P.M.: Properties of a one-dimensional metallophotonic crystal. Phys. Rev. B 70, 035101 (2004)

    Article  ADS  Google Scholar 

  • Shen, J.T., Catrysse, P.B., Fan, S.: Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 94, 194401 (2005)

    Article  Google Scholar 

  • Shen, P.T., Sivan, Y., Lin, C.W., Liu, H.L., Chang, C.W., Chu, S.W.: Temperature- and -roughness dependent permittivity of annealed/unannealed gold films. Opt. Express 24(17), 19254–19263 (2016)

    Article  ADS  Google Scholar 

  • Shin, J., Shen, J.T., Catrysse, P.B., Fan, S.: Cut-through metal slit array as an anisotropic metamaerial film. IEEE J. Sel. Topics Quantum Electron. 12(6), 1116–1122 (2006)

    Article  ADS  Google Scholar 

  • Stavrinou, P.N., Solymar, L.: The propagation of electromagnetic power through subwavelength slits in a metallic grating. Opt. Commun. 206, 217–223 (2002)

    Article  ADS  Google Scholar 

  • Takakura, Y.: Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev. Lett. 86(24), 5601–5603 (2001)

    Article  ADS  Google Scholar 

  • Tao, J., Cai, H., Gu, Y., Wu, J., Liu, A.: Demonstration of a photonic-based linear temperature sensor. IEEE Photon. Technol. Lett. 27(7), 767–769 (2015)

    Article  ADS  Google Scholar 

  • Wang, Y., Shu, H., Han, X.: Research on high-precision silicon-based integrated optical temperature sensor. Proc. SPIE 12062, 120620L (2021)

    Google Scholar 

  • Xu, H., Hafezi, M., Fan, J., Taylor, J., Strouse, G., Ahmed, Z.: Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 22(3), 3098–3104 (2014)

    Article  ADS  Google Scholar 

  • Xue, D., Zhang, H., Wang, S., Li, H., Jiang, J., Jia, D., Liu, T.: High sensitivity composite F-P cavity fiber optic sensor based on MEMS for temperature and salinity measurement of seawater. Opt. Express 31, 33241–33252 (2023)

    Article  ADS  Google Scholar 

  • Yan, H.T., Liu, Q., Ming, Y., Luo, W., Chen, Y., Lu, Y.: Metallic grating on a D-shaped fiber for refractive index sensing. IEEE Photonics J. 5(5), 4800706 (2013)

    Article  ADS  Google Scholar 

  • You, M., Lin, Z., Li, X., Liu, J.: Chip-scale silicon ring resonators for cryogenic temperature sensing. Lightwave Technol. 38(20), 5768–5773 (2020)

    Article  ADS  Google Scholar 

  • Yu, Y.L., Kishikawa, H., Liaw, S.K., et al.: Simultaneous measurement of temperature and refractive index based on an SPR silicon core fiber sensor with a fused silica grating design. Opt. Quant. Electron. 54, 63 (2022)

    Article  Google Scholar 

  • Zaky, Z.A., Ahmed, A.M., Aly, A.H.: Remote temperature sensor based on Tamm resonance. Silicon 14, 2765–2777 (2022)

    Article  Google Scholar 

  • Zarei, S.: Design and analysis of a fiber-optic deep-etched silicon photonic crystal temperature sensor. J. Electromagn. Waves Appl. 33(2), 226–235 (2019a)

    Article  ADS  Google Scholar 

  • Zarei, S.: A design to tune the frequency in a terahertz filter based on dual-layered metallic slit arrays. Photonics Nanostruct. Fundam. Appl. 34, 5–10 (2019b)

    Article  ADS  Google Scholar 

  • Zarei, S., Mohajerzadeh, S.: Exploitation of semi-sequential reactive ion etch processes to fabricate in-plane silicon structures. Micro Nano Lett. 13(4), 421–426 (2018)

    Article  Google Scholar 

  • Zarei, S., Shahabadi, M., Mohajerzadeh, S.: Analysis of a fiber-optic deep-etched silicon Fabry-Perot temperature sensor and modeling its fabrication imperfections. Microsyst. Technol. 25(2), 389–397 (2019a)

    Article  Google Scholar 

  • Zarei, S., Zahedinejad, M., Mohajerzadeh, S.: Metal-assisted chemical etching for realization of deep silicon micro-structures. Micro Nano Lett. 14(10), 1083–1086 (2019b)

    Article  Google Scholar 

  • Zarei, S., Mohajerzadeh, S., Shahabadi, M.: Design and fabrication of a fiber-optic deep-etched silicon Fabry-Perot temperature sensor. In: IEEE International Conference on Telecommunications and Photonics, Dhaka, Bangladesh (2017)

  • Zegadi, R., Ziet, L., Zegadi, A.: Design of high sensitive temperature sensor based on two-dimensional photonic crystal. Silicon 12, 2133–2139 (2020)

    Article  Google Scholar 

  • Zhang, Y., Zou, J., He, J.J.: Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering. Opt. Express 26, 26057–26064 (2018)

    Article  ADS  Google Scholar 

  • Zhu, J., Xu, Z.: Tunable temperature sensor based on an integrated plasmonic grating. Opt. Mater. Express 9, 435–440 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S. Z conceived the idea, formulated the analytical model for the analysis of the designed structures, performed the TMM simulations and FEM verifications, analyzed the results, and wrote the manuscript.

Corresponding author

Correspondence to Sanaz Zarei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies involving animals or human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, S. Double-layered subwavelength metallic slit array for performance-improvement of a fiber-optic silicon Fabry–Perot temperature sensor. Opt Quant Electron 56, 1061 (2024). https://doi.org/10.1007/s11082-024-07006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-07006-1

Keywords

Navigation