Skip to main content

Advertisement

Log in

Broadband optical absorption enhancement in stacked MWCNTs array: towards new generation of solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a new type of multi-layer solar cell structure based on multi-walled carbon nanotube (MWCNT) photonic crystals grown on a silicon substrate. The structure is constructed by stacking layers of MWCNTs array with different lattice constants from 100 to 800 nm as an active layer. It exhibits a remarkable absorption efficiency, reaching a peak value of 92.61% within a broad absorption spectrum spanning from 100 to 2000 nm. The absorption capacity and range are significantly improved compared to conventional solar cell structures. The effect of the filling factor on the absorption coefficient was examined. Various filling factor values ranging from 4 to 60% were evaluated to optimize the structure, with the most favorable outcome observed at a filling factor of f = 30%. The host medium is silicon, which is fully compatible with Si technology, enabling seamless easy integration with other Si-based technology devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Almenabawy, S., Zhang, Y., Flood, A., Prinja, R., Kherani, N.P.: Nanometer-mesa inverted-pyramid photonic crystals for thin silicon solar cells. ACS Appl. Energy Mater. 5(11), 13808–13816 (2022)

    Article  Google Scholar 

  • Bondada, P., Samanta, D., Kaur, M., Lee, H.-N.: Data security-based routing in MANETs using key management mechanism. Appl. Sci. 12(3), 1041 (2022)

    Article  Google Scholar 

  • Butt, H., Dai, Q., Rajesekharan, R., Wilkinson, T.D., Amaratunga, G.A.: Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials. ACS Nano 5(11), 9138–9143 (2011)

    Article  Google Scholar 

  • Chen, L., Luo, W., Fang, B., Zhu, B., Zhang, W.: Study on light absorption of CH3NH3PbI3 perovskite solar cells enhanced by gold nanobipyramids. Opt. Laser Technol. 159, 108924 (2023)

    Article  Google Scholar 

  • Chen, L., Wei, E., Choy, W.C.: Light harvesting improvement of organic solar cells with self-enhanced active layer designs. Opt. Express 20(7), 8175–8185 (2012)

    Article  ADS  Google Scholar 

  • Chutinan, A., Kherani, N.P., Zukotynski, S.: High-efficiency photonic crystal solar cell architecture. Opt. Express 17(11), 8871–8878 (2009)

    Article  ADS  Google Scholar 

  • Dostrovsky, I.: Chemical fuels from the sun. Sci. Am. 265(6), 102–107 (1991)

    Article  Google Scholar 

  • Du, Q.G., Kam, C.H., Demir, H.V., Yu, H.Y., Sun, X.W.: Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Opt. Lett. 36(9), 1713–1715 (2011)

    Article  ADS  Google Scholar 

  • Edman Jonsson, G., Fredriksson, H., Sellappan, R., Chakarov, D.: Nanostructures for enhanced light absorption in solar energy devices. Int. J. Photoenergy 2011, 1–11 (2011)

  • Elshorbagy, M.H., Esteban, O., Cuadrado, A., Alda, J.: Nanostructured top contact as an alternative to transparent conductive oxides in tandem perovskite/c-Si solar cells. Appl. Sci. 12(4), 1854 (2022)

    Article  Google Scholar 

  • Etemadi, B., Mobini, A.: Optical absorption engineering in dispersive band structure of MWCNTs array: design and optimization of total absorber for NIR to MIR regime. Optoelectron. Lett. 18(9), 513–518 (2022)

    Article  ADS  Google Scholar 

  • Eyderman, S., Deinega, A., John, S.: Near perfect solar absorption in ultra-thin-film GaAs photonic crystals. J. Mater. Chem. A 2(3), 761–769 (2014)

    Article  Google Scholar 

  • Fukuda, M., Lee, K.-T., Lee, J.Y., Guo, L.J.: Optical simulation of periodic surface texturing on ultrathin amorphous silicon solar cells. IEEE J. Photovolt. 4(6), 1337–1342 (2014)

    Article  Google Scholar 

  • Fusco, C., Casiello, M., Pisani, P., Monopoli, A., Fanelli, F., Oberhauser, W., et al.: Steel slag as low-cost catalyst for artificial photosynthesis to convert CO2 and water into hydrogen and methanol. Sci. Rep. 12(1), 11378 (2022)

    Article  ADS  Google Scholar 

  • Ghafari, S., Mobini, A., Solimani, M.: Nano-scale planar photodetector based on ring form MQWs for FIR regime. JOSA B. 36(4), 897–900 (2019)

    Article  ADS  Google Scholar 

  • Gomard, G., Drouard, E., Letartre, X., Meng, X., Kaminski, A., Fave, A., et al.: Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells. J. Appl. Phys. 108(12), 123102 (2010)

    Article  ADS  Google Scholar 

  • Gong, Q., Hu, X.: Photonic Crystals: Principles and Applications. CRC Press (2014)

    Book  Google Scholar 

  • Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X.: Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 29(1), 3–15 (2021)

    Article  Google Scholar 

  • Gupta, N.D., Janyani, V.: Analysis of photonic crystal diffraction grating based light trapping structure for GaAs solar cell. IETE J. Res. 67(5), 714–725 (2021)

    Article  Google Scholar 

  • Güzel, E., Arslan, B.S., Durmaz, V., Cesur, M., Tutar, Ö.F., Sarı, T., et al.: Photovoltaic performance and photostability of anthocyanins, isoquinoline alkaloids and betalains as natural sensitizers for DSSCs. Sol. Energy 173, 34–41 (2018)

    Article  ADS  Google Scholar 

  • Han, S.E., Chen, G.: Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10(3), 1012–1015 (2010)

    Article  ADS  Google Scholar 

  • Harriman, A.: Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry. Philos. Trans. r. Soc. A Math. Phys. Eng. Sci. 371(1996), 20110415 (2013)

    Article  ADS  Google Scholar 

  • Hosseinnezhad, M., Gharanjig, K., Yazdi, M.K., Zarrintaj, P., Moradian, S., Saeb, M.R., Stadler, F.J.: Dye-sensitized solar cells based on natural photosensitizers: a green view from Iran. J. Alloy. Compd. 828, 154329 (2020)

    Article  Google Scholar 

  • Hu, H., Zhou, X., Chen, J., Wang, D., Li, D., Huang, Y., et al.: Crystallization regulation and morphological evolution for HTM-free tin-lead (1.28 eV) alloyed perovskite solar cells. Energy Environ. Mater. 6(2), e12322 (2023)

    Article  Google Scholar 

  • Islam, M.S., Hoq, M., Haque, M.A.S., Akand, M.A.R., Hasan, M.R., Basher, M.K.: Challenges and prospects of cost-effective Si-based solar cells fabrication in Bangladesh. In: 2014 International Conference on Electrical Engineering and Information & Communication Technology, pp. 1–6. IEEE (2014)

  • Kazemi, M.A.A., Folastre, N., Raval, P., Sliwa, M., Nsanzimana, J.M.V., Golonu, S., et al.: Moisture-induced non-equilibrium phase segregation in triple cation mixed halide perovskite monitored by in situ characterization techniques and solid-state NMR. Energy Environ. Mater. 6(2), e12335 (2023)

    Article  Google Scholar 

  • Kibria, M.T., Ahammed, A., Sony, S.M., Hossain, F., & Islam, S.: A Review: Comparative studies on different generation solar cells technology. In: Proceedings of 5th International Conference on Environmental Aspects of Bangladesh, pp. 51–53. (2014)

  • Li, A., Wu, Z., Zhuo, R., He, T., Zhao, Y., Yan, P., Zhang, G.: Theoretical simulation and experimental perspective of refractive index-controlled silicon nanofilms for solar cell efficiency improvement. Sol. Energy Mater. Sol. Cells 251, 112145 (2023a)

    Article  Google Scholar 

  • Li, Z., Feng, J., Cao, J., Jin, J., Zhou, Y., Cao, D., et al.: New carbon nitride C3N3 additive for improving cationic defects of perovskite solar cells. Energy Environ. Mater. 6(1), e12283 (2023b)

    Article  Google Scholar 

  • Lidorikis, E., Ferrari, A.C.: Photonics with multiwall carbon nanotube arrays. ACS Nano 3(5), 1238–1248 (2009)

    Article  Google Scholar 

  • Liu, W., Ma, H., Walsh, A.: Advance in photonic crystal solar cells. Renew. Sustain. Energy Rev. 116, 109436 (2019)

    Article  Google Scholar 

  • Liu, H., Du, Y., Yin, X., Bai, M., Liu, W.: Micro/Nanostructures for Light Trapping in Monocrystalline Silicon Solar Cells. J. Nanomater. 2022 (2022)

  • Lyu, H., Hisatomi, T., Goto, Y., Yoshida, M., Higashi, T., Katayama, M., et al.: An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10(11), 3196–3201 (2019)

    Article  Google Scholar 

  • Meng, X., Gomard, G., El Daif, O., Drouard, E., Orobtchouk, R., Kaminski, A., et al.: Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation. Sol. Energy Mater. Sol. Cells 95, S32–S38 (2011)

    Article  Google Scholar 

  • Mobini, A., Ahmadi, V.: Nanoscale all-angle waveguide based on plasmon band effect in triangular array of MWCNTs. J. Light. Technol. 31(23), 3859–3864 (2013)

    Article  ADS  Google Scholar 

  • Mukherjee, S., Misra, A.: Broadband wavelength-selective reflectance and selective polarization by a tip-bent vertically aligned multi-walled carbon nanotube forest. J. Phys. D Appl. Phys. 47(23), 235501 (2014)

    Article  ADS  Google Scholar 

  • Mutitu, J.G., Shi, S., Barnett, A., Prather, D.W.: Angular selective light filter based on photonic crystals for photovoltaic applications. IEEE Photonics J. 2(3), 490–499 (2010)

    Article  ADS  Google Scholar 

  • Nan, H., Shen, H.-P., Wang, G., Xie, S.-D., Yang, G.-J., Lin, H.: Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell. Opt. Mater. 73, 172–178 (2017)

    Article  ADS  Google Scholar 

  • Ouanoughi, A., Hocini, A., Khedrouche, D.: Study of the absorption in solar cells with 2D photonic crystals. Acta Phys. Pol., A 127(4), 1205–1207 (2015)

    Article  ADS  Google Scholar 

  • Özönder, S., Ünlü, C., Güleryüz, C., Trabzon, L.: Doped Graphene Quantum Dots UV–Vis Absorption Spectrum: A High-Throughput TDDFT Study. ACS Omega. 8(2), 2112–2118 (2023)

    Article  Google Scholar 

  • Rafiee, E., Abolghasemi, F.: An all-optical 1* 2 de-multiplexer based on two-dimensional nonlinear photonic crystal ring resonators. Optoelectron. Lett. 20(1), 23–27 (2024)

    Article  ADS  Google Scholar 

  • Rafiee, E., Afkhami, M.: Design of an all-optical compact 2* 1 multiplexer based on 2D photonic crystal ring resonators. Opt. Quant. Electron. 56(3), 283 (2024)

    Article  Google Scholar 

  • Rafiee, E., Emami, F.: Realization of tunable optical channel drop filter based on photonic crystal octagonal shaped structure. Optik 171, 798–802 (2018)

    Article  ADS  Google Scholar 

  • Rafiee, E., Emami, F., Negahdari, R.: Design of a novel nano plasmonic-dielectric photonic crystal power splitter suitable for photonic integrated circuits. Optik 172, 234–240 (2018)

    Article  ADS  Google Scholar 

  • Rafiee, E:. Photonic crystal based biosensor for diagnosis of kidney failure and diabetes. Plasmonics 19 1–7 (2023)

  • Rafiee, E., Rafiei, E.: Hypercholesterolemia diagnosis by a biosensor based on photonic crystal PANDA structure. Opt Rev 31, 87–93 (2024)

  • Raja, W., Bozzola, A., Zilio, P., Miele, E., Panaro, S., Wang, H., et al.: Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells. Sci. Rep. 6(1), 24539 (2016)

    Article  ADS  Google Scholar 

  • Sadhu, A.S., Huang, Y.-M., Chen, L.-Y., Kuo, H.-C., Lin, C.-C.: Recent advances in colloidal quantum dots or perovskite quantum dots as a luminescent downshifting layer embedded on solar cells. Nanomaterials 12(6), 985 (2022)

    Article  Google Scholar 

  • Samadi, M., Haidari, G., Bahiraei, H.: Insights in light trapping for new generation silicon solar cell: optical characterization of plasmonic nanostructures beside anti-reflection layer. Opt. Quant. Electron. 55(1), 71 (2023)

    Article  Google Scholar 

  • Sankir, N.D., Sankir, M.: Printable solar cells. John Wiley & Sons (2017)

    Book  Google Scholar 

  • Seassal, C., Park, Y., Fave, A., Drouard, E., Fourmond, E., Kaminski, A., et al.: Photonic crystal assisted ultra-thin silicon photovoltaic solar cell. In: Photonics for Solar Energy Systems II., vol 7002, pp. 33–40. SPIE (2008)

  • Shamsollahi, Y., Moravvej-Farshi, M.K., Ebnali-Heidari, M.: Photonic crystals based on periodic arrays of MWCNTs: modeling and simulation. J. Light. Technol. 31(12), 1946–1953 (2013)

    Article  ADS  Google Scholar 

  • Siavash Moakhar, R., Gholipour, S., Masudy-Panah, S., Seza, A., Mehdikhani, A., Riahi-Noori, N., et al.: Recent advances in plasmonic perovskite solar cells. Adv. Sci. 7(13), 1902448 (2020)

    Article  Google Scholar 

  • Solaimani, M., Mobini, A.: Spectral tuning in quantum rings by magnetic field: detection from NIR to FIR regime. Opt. Quantum Electron. 54(3), 145 (2022)

    Article  Google Scholar 

  • Solaimani, M., Mobini, A., Kenari, A.R.: Optical absorption engineering in two-dimensional quantum rings: design and optimization for FIR to MIR detection applications. Opt. Quantum Electron. 54(7), 463 (2022)

    Article  Google Scholar 

  • Talebi, H., Emami, F., Rafiee, E.: Broadband absorption enhancement in hole-transport-layer-free perovskite solar cell by grating structure. Optoelectron. Lett. 19(10), 587–592 (2023)

    Article  ADS  Google Scholar 

  • von Freymann, G., Kitaev, V., Lotsch, B.V., Ozin, G.A.: Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 42(7), 2528–2554 (2013)

    Article  Google Scholar 

  • Vynck, K., Burresi, M., Riboli, F., Wiersma, D.S.: Photon management in two-dimensional disordered media. Nat. Mater. 11(12), 1017–1022 (2012)

    Article  ADS  Google Scholar 

  • Wang, X., Khan, M.R., Gray, J.L., Alam, M.A., Lundstrom, M.S.: Design of GaAs solar cells operating close to the Shockley–Queisser limit. IEEE J. Photovolt. 3(2), 737–744 (2013)

    Article  Google Scholar 

  • Wąsik, M., Dużyńska, A., Judek, J., Pawłowski, M., Świtkowski, K., Witowski, A., Zdrojek, M.: Ultraviolet to far-infrared transmission properties of thin film multi-walled carbon nanotube random networks. J. Mater. Sci. 52, 3086–3094 (2017)

    Article  ADS  Google Scholar 

  • Wood, B., Dyer, J., Thurgood, V., Tomlin, N., Lehman, J., Shen, T.-C.: Optical reflection and absorption of carbon nanotube forest films on substrates. J. Appl. Phys. 118(1), 013106 (2015)

    Article  ADS  Google Scholar 

  • Wu, Y., Fu, Q., Sun, S., Du, Q., Li, Z.: Optical design and optimization of BP/c-Si tandem solar cells. Opt. Commun. 530, 129123 (2023)

    Article  Google Scholar 

  • Xie, K., Guo, M., Huang, H.: Photonic crystals for sensitized solar cells: fabrication, properties, and applications. J. Mater. Chem. C 3(41), 10665–10686 (2015)

    Article  Google Scholar 

  • Xie, R., Li, Z., Gu, E., Guo, S., Yuan, Y.: Absorption efficiency enhancement of organic solar cells by double grating structure. Photonics Nanostruct. Fundam. Appl. 38, 100763 (2020)

    Article  Google Scholar 

  • Yao, Y., Yao, J., Narasimhan, V.K., Ruan, Z., Xie, C., Fan, S., Cui, Y.: Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat. Commun. 3(1), 1–7 (2012)

    Article  Google Scholar 

  • Zanotto, S., Liscidini, M., Andreani, L.C.: Light trapping regimes in thin-film silicon solar cells with a photonic pattern. Opt. Express 18(5), 4260–4272 (2010)

    Article  ADS  Google Scholar 

  • Zeng, L., Yi, Y., Hong, C., Liu, J., Feng, N., Duan, X., et al.: Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Appl. Phys. Lett. 89(11), 111111 (2006)

    Article  ADS  Google Scholar 

  • Zhenhua, W., Simin, L., Wentao, Z.: Back reflector of solar cells consisting of one-dimensional photonic crystal and double-layered two-dimensional photonic crystal. Acta Photonica Sin 45(2), 0223003–0223011 (2016)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study’s conception and design. Data collection and analysis were performed by Bita Etemadi and Alireza Mobini. The first draft of the manuscript was written by Bita Etemadi. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alireza Mobini.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadi, B., Mobini, A. Broadband optical absorption enhancement in stacked MWCNTs array: towards new generation of solar cells. Opt Quant Electron 56, 1093 (2024). https://doi.org/10.1007/s11082-024-06976-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06976-6

Keywords

Navigation