Skip to main content
Log in

Entanglement and steering in a cross-shaped double-cavity with a magnetic sphere and driven by a squeezed vacuum field

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have explored steady-state entanglement and steering in a cross-shaped double-cavity with a levitating magnetic sphere and driven by a squeezed vacuum field. From the equations of motion of the system, we derived the linearized Lyapunov equation for the steady-states, introduced the logarithmic negativity to measure the entanglement and a similar quantity to measure the steering, and conducted calculations in parameter regions around stable steady-states. Numerical results show that steady-state entanglement and steering between various components of the system, such as cavity-cavity, cavity-magnon, and cavity-phonon, can form by choosing experimentally feasible detunings, dissipation rates, and coupling rates. Moreover, one-way steering can be achieved through appropriately adjusting the system parameters. The proposed model provides a platform for the study of the entanglement and one-way steering, and may find itself applications in quantum information processing and quantum cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

No datasets were generated or analysed during the current study.

References

  • Amazioug, Mohamed, Singh, Shailendra: Berihu Teklu and and Muhammad Asjad, Feedback Control of Quantum Correlations in a Cavity Magnomechanical System with Magnon Squeezing. Entropy 25, 1462 (2023)

    Article  ADS  Google Scholar 

  • Bell, J.S.: On the Einstein-Podolsky-Rosen Paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  • Bemani, F., Motazedifard, A., Roknizadeh, R., Naderi, M.H., Vitali, D.: Synchronization dynamics of two nanomechanical membranes within a fabry-perot cavity Phys. Rev. A 96, 023805 (2017)

    Article  Google Scholar 

  • Bemani, F., Roknizadeh, R., Motazedifard, A., Naderi, M.H., Vitali, D.: Quantum correlations in optomechanical crystals. Phys. Rev. A 99, 063814 (2019)

    Article  ADS  Google Scholar 

  • Curty, M., Lewenstein, M., Lütkenhaus, N.: Entanglement as a Precondition for Secure Quantum Key Distribution. Phys. Rev. Lett. 92, 217903 (2004)

    Article  ADS  Google Scholar 

  • DeJesus, E.X., Kaufman, C.: Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • Ebrahimi, M.S., Motazedifard, A., Harouni, M.B.: Single-quadrature quantum magnetometry in cavity electromagnonics. Phys. Rev. A 103, 062605 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  • Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  • Gardiner, C.W., Zoller, P.: Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  • Giampaolo, S.M., Illuminati, F.: Long-distance entanglement and quantum teleportation in coupled-cavity arrays. Phys. Rev. A 80, 050301 (2009)

    Article  ADS  Google Scholar 

  • He, Q.Y., Ficek, Z.: Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system. Phys. Rev. A 89, 74–79 (2014)

    Article  Google Scholar 

  • He, Q.Y., Gong, Q.H., Reid, M.D.: Classifying directional gaussian entanglement, Einstein-Podolsky-Rosen steering, and discord. Phys. Rev. Lett. 114, 060402 (2015)

    Article  ADS  Google Scholar 

  • Hidki, Abdelkader, Ren, Ya-Long., Lakhfif, Abderrahim, El Qars, Jamal, Nassik, Mostafa: Enhanced maximum entanglement between two microwave fields in the cavity magnomechanics with an optical parametric amplifier. Phys. Lett. A 463, 128667 (2023)

    Article  Google Scholar 

  • Hirota, O., Holevo, A.S., Caves, C.M.: Quantum communication, computing, and measurement. Springer (2012)

    Google Scholar 

  • Honjo, T., Nam, S.W., Takesue, H., Zhang, Q., Kamada, H., Nishida, Y., Tadanaga, O., Asobe, M., Baek, B., Hadfield, R., Miki, S., Fujiwara, M., Sasaki, M., Wang, Z., Inoue, K., Yamamoto, Y.: Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Exp. 16, 19118–19126 (2008)

    Article  Google Scholar 

  • Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and quantum communication. Springer, Berlin Heidelberg (2001)

    Book  Google Scholar 

  • Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  • Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  • Li, Jie, Groblacher, Simon: Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quant. Sci. Technol. 6, 02405 (2021)

    Google Scholar 

  • Linden, N., Popescu, S.: Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation? Phys. Rev. Lett. 87, 047901 (2001)

    Article  ADS  Google Scholar 

  • Li, J., Zhu, S.Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 21, 085001 (2019)

    Article  ADS  Google Scholar 

  • Li, J., Zhu, S.-Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, 021801 (2019)

    Article  ADS  Google Scholar 

  • Li, J., Zhu, S.-Y., Agarwal, G.S.: Magnon-photon-phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  • Maity, A.G., Datta, S., Majumdar, A.S.: Tighter Einstein-Podolsky-Rosen steering inequality based on the sum-uncertainty relation. Phys. Rev. A 96, 052326 (2017)

    Article  ADS  Google Scholar 

  • Midgley, S.L.W., Ferris, A.J., Olsen, M.K.: Asymmetric Gaussian steering: when Alice and Bob disagree. Phys. Rev. A 81, 022101 (2010)

    Article  ADS  Google Scholar 

  • Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)

    Google Scholar 

  • Rigas, J., Gühne, O., Lütkenhaus, N.: Entanglement verification for quantum-key-distribution systems with an underlying bipartite qubit-mode structure. Phys. Rev. A 73, 012341 (2006)

    Article  ADS  Google Scholar 

  • Schrödinger, E.: Discussion of probability relations between separated systems. Math. Pro. Cambridge 31, 555–563 (1935)

    Article  ADS  Google Scholar 

  • Schrödinger, E.: Probability relations between separated systems. Math. Pro. Cambridge 32, 446 (1936)

    Article  ADS  Google Scholar 

  • Serga, A.A., Chumak, A.V., Hillebrands, B.: Magnonic crystals for data processing. J. Phys. D Appl. Phys. 43, 264002 (2010)

    Article  ADS  Google Scholar 

  • Solki, H., Motazedifard, A., Naderi, M.H.: Improving photon blockade, entanglement, and mechanical-cat-state generation in a generalized cross-kerr optomechanical circuit. Phys. Rev. A 108, 063505 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  • Tan, Huatang: Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical syste. Phys. Rev. Res. 1, 033161 (2019)

    Article  Google Scholar 

  • Uola, R., Acs, C., Nguyen, H.C.: Quantum steering. Rev. Mod. Phys. 92, 1 (2020)

    Article  MathSciNet  Google Scholar 

  • Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  • Xie, H., He, L., Liao, Chang-Geng., Chen, Zhi-Hua., Lin, Xiu-Min.: Generation of robust optical entanglement in cavity optomagnonics. Opt. Express 31, 7994–8004 (2023)

    Article  ADS  Google Scholar 

  • Yang, Zhi-Bo., Liu, Xuan-De., Yin, Xin-Yi., Ming, Ying, Liu, Hong-Yu., Yang, Rong-Can.: Controlling stationary one-way quantum steering in cavity magnonics. Phys. Rev. Appl. 15, 024042 (2021)

    Article  ADS  Google Scholar 

  • Yuen, H., Shapiro, J.: Optical communication with two-photon coherent states- part i: quantum-state propagation and quantum-noise reduction. IEEE Trans. Inf. Theory 24, 657–668 (1978)

    Article  ADS  Google Scholar 

  • Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2, 1501286 (2016)

    Article  ADS  Google Scholar 

  • Zhang, D., Wang, X.M., Li, T.F., Luo, X.Q., Wu, W., Nori, F., You, J.: Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. NPJ Quant. Inf. 1, 15014 (2015)

    Article  ADS  Google Scholar 

  • Zhang, Wei, Wang, Tie, Han, Xue, Zhang, Shou, Wang, Hong-Fu.: Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field. Opt. Exp. 15, 10969–10980 (2021)

    Google Scholar 

  • Zhao, Yabo, Zhao, Ruiqing, Chen, Lanxin, Pan, Jingyu, Zhang, Mei: Steady-state entanglement in a mechanically coupled double cavity containing magnetic spheres. Quant. Inf. Process. 22, 307 (2022)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Z. thanks Junzhong Yang for helpful discussions. This work was supported by the National Natural Science Foundation of China under Grant No. 11475021 and the National Key Basic Research Program of China under Grant No. 2013CB922000.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

R.Z. wrote the main manuscript text and prepared all the figures. J.J. and L.W. reviewed the manuscript. M.Z. drafted the manuscript.

Corresponding author

Correspondence to Mei Zhang.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Jia, J., Wu, L. et al. Entanglement and steering in a cross-shaped double-cavity with a magnetic sphere and driven by a squeezed vacuum field. Opt Quant Electron 56, 947 (2024). https://doi.org/10.1007/s11082-024-06859-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06859-w

Keywords

Navigation