Skip to main content
Log in

Propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the propagation properties of a partially coherent vortex cosine-hyperbolic-Gaussian beam (PCvChGB) propagating in weak oceanic turbulence. We established the analytical expression of the average intensity of the PCvChGB based on the Huygens-Fresnel integral and Rytov theory. The obtained results indicate that the PCvChGB may propagate within longer distances in weak oceanic turbulence as the dissipation rate of mean squared temperature or the ratio of temperature to salinity contribution to the refractive index spectrum becomes smaller or the dissipation rate of turbulent kinetic energy per unit mass becomes larger. The influence of oceanic turbulence on the spreading properties of a PCvChGB is related to the initial beam parameters, such as the decentered parameter b, topological charge M, and coherence length. A comparison of the beam profile evolution in oceanic turbulence and free space is presented in detail for the different parameters involved. The results can benefit optical underwater communication and remote sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets is used in the present study.

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. National Bureau of Standards, Washington (1964)

    Google Scholar 

  • Andrews, L.C., Philips, R.L.: Laser Beam Propagation Through Random Media. SPIE Press, Washington (1998)

    Google Scholar 

  • Ata, Y., Baykal, Y.: Transmittance of multi Gaussian optical beams for uplink application in atmospheric turbulence. IEEE J. Sel. Areas Commun. 33, 1996–2001 (2015)

    Article  Google Scholar 

  • Baykal, Y.: Scintillation index in strong oceanic turbulence. Opt. Commun. 375, 15–18 (2016a)

    Article  ADS  Google Scholar 

  • Baykal, Y.: Scintillation of LED sources in oceanic turbulence. Appl. Opt. 55(31), 8663–8860 (2016b)

    Article  Google Scholar 

  • Baykal, Y., Eyyuboğlu, H.T., Cai, Y.: Scintillations of partially coherent multiple Gaussian beams in turbulence. Appl. Opt. 48(10), 1943–1954 (2009)

    Article  ADS  Google Scholar 

  • Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. and Appl. 5, 313–319 (2020)

    Google Scholar 

  • Eyyuboğlu, H.T., Baykal, Y., Sermutlu, E.: Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere. Opt. Commun. 265, 399–405 (2006)

    Article  ADS  Google Scholar 

  • Fu, W., Zhang, H.: Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean. Opt. Commun. 304, 11–18 (2013)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Product, 5th edn. Academic Press, New York (1994)

    Google Scholar 

  • Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Propagation of vortex cosine–hyperbolic-Gaussian beams through atmospheric turbulence. Opt. Quant. Elect. 53(7), 383–398 (2021)

    Article  Google Scholar 

  • Hricha, Z., El Halba, E.M., Lazrek, M., Belafhal, A.: Focusing properties and focal shift of partially coherent vortex cosine-hyperbolic-Gaussian beams. Opt. Quant. Elect. 69(14), 779–790 (2022a)

    MathSciNet  Google Scholar 

  • Hricha, Z., Lazrek, M., El Halba, E.M., Belafhal, A.: Effect of a turbulent atmosphere on the propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams. Opt. Quant. Elec. 54, 634–719 (2022b)

    Article  Google Scholar 

  • Huang, Y., Zhang, B., Gao, Z., Zhao, G., Duan, Z.: Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence. Opt. Express 22, 17723–17734 (2014)

    Article  ADS  Google Scholar 

  • Huang, Y., Huang, P., Wang, F., Zhao, Z., Zeng, A.: The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams. Opt. Commun. 336, 146–152 (2015)

    Article  ADS  Google Scholar 

  • Johnson, L.L., Jasman, F., Green, R.J., Sleeson, M.: Recent advances in underwater optical wireless communications. Underw. Technol. 9(32), 167–175 (2014)

    Article  Google Scholar 

  • Korotkova, O., Farwell, N.: Effect of oceanic turbulence on polarization of stochastic beams. Opt. Commun. 284, 1740–1746 (2011)

    Article  ADS  Google Scholar 

  • Lazrek, M., Hricha, Z., Belafhal, A.: Partially coherent vortex cosine-hyperbolic-Gaussian beam and its paraxial propagation. Opt. Quant. Elec. 53, 694–712 (2021)

    Article  Google Scholar 

  • Lazrek, M., Hricha, Z., Belafhal, A.: Propagation properties of vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence. Opt. Quant. Elect. 54(3), 1–14 (2022)

    Article  Google Scholar 

  • Li, Y., Han, Y., Cui, Z.: On-axis average intensity of a hollow Gaussian beam in turbulent ocean. Opt. Eng. 58(9), 096115–096121 (2019)

    Article  ADS  Google Scholar 

  • Liu, D.J., Wang, Y.C.: Average intensity of a Lorentz beam in oceanic turbulence. Optik 144, 16–85 (2017)

    Article  Google Scholar 

  • Liu, D., Wang, Y.: Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence. Appl. Phys. B 124(176), 1–9 (2018)

    Google Scholar 

  • Liu, D.J., Wang, Y.C., Yin, H.M.: Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Appl. Opt. 54, 10510–10516 (2015)

    Article  ADS  Google Scholar 

  • Liu, D.J., Chen, L., Wang, Y.C., Wang, G.Q., Yin, H.M.: Average intensity properties of flat-topped vortex hollow beam propagating through oceanic turbulence. Optik 127, 6961–6969 (2016)

    Article  ADS  Google Scholar 

  • Liu, D., Wang, Y., Luo, X., Wang, G., Yin, H.: Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence. J. Mod. Opt. 64, 1579–1587 (2017a)

    Article  MathSciNet  ADS  Google Scholar 

  • Liu, D., Wang, Y., Wang, G., Luo, X., Yin, H.: Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence. Laser Phys. 27(016001), 1–8 (2017b)

    Google Scholar 

  • Liu, D.J., Yin, H., Wang, G., Wang, Y.C.: Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence. Appl. Opt. 56, 8785–8792 (2017c)

    Article  ADS  Google Scholar 

  • Liu, D., Yin, G.W.H., Zhong, H., Wang, Y.: Propagation properties of a partially coherent anomalous hollow vortex beam in underwater oceanic turbulence. Opt. Commun. 437, 346–354 (2019)

    Article  ADS  Google Scholar 

  • Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  • Nikshov, V., Nikishov, V.: Spectrum of turbulent fluctuations of the sea-water refraction index. Int. J. Fluid Mech. Res. 27, 82–98 (2000)

    Article  MathSciNet  Google Scholar 

  • Tang, M.M., Zhao, D.M.: Propagation of radially polarized beams in the oceanic turbulence. Appl. Phys. B 111, 665–670 (2013)

    Article  ADS  Google Scholar 

  • Tang, M., Zhao, D.: Regions of spreading of Gaussian array beams propagating through oceanic turbulence. Appl. Opt. 54, 3407–3411 (2015)

    Article  ADS  Google Scholar 

  • Wang, F., Liu, X., Cai, Y.: Propagation of partially coherent beam in turbulent atmosphere: a review. Prog. Electromag. Res. 150, 123–143 (2015)

    Article  Google Scholar 

  • Xu, J., Zhao, D.M.: Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence. Opt. Laser Technol. 57, 189–193 (2014)

    Article  ADS  Google Scholar 

  • Zhou, Y., Chen, Q., Zhao, D.M.: Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence. Appl. Phys. B 114, 475–482 (2014)

    Article  ADS  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Z. Hricha or A. Belafhal.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare that this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to participate

Informed consent was obtained from all authors.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazrek, M., Hricha, Z. & Belafhal, A. Propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence. Opt Quant Electron 56, 881 (2024). https://doi.org/10.1007/s11082-024-06728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06728-6

Keywords

Navigation