Skip to main content
Log in

Structural and optoelectronic properties of 2D halide perovskites Cs2MBr4 (M = Zn, Cd, Hg): a first principle study

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Electronic band structures, density of states, optical parameters, and structure properties of 2D layered halide perovskites Cs2MBr4 (M = Zn, Cd, Hg) are investigated using density functional theory (DFT). The structure optimization/relaxation was executed by generalized gradient approximation (GGA) and to handle band gap dependent properties (optical and electronic) modified Becke Johnson (GGA-mBJ) exchange potential was operated. In the structure composition of Cs2MBr4, the metal cations (M = Zn, Cd, Hg) build an isolated tetrahedra with bromine atoms i.e. [MBr4]2−. Eleven Cs atoms confine the tetrahedra and each Cs is surrounded by six tetrahedra, making an octahedral geometry [MBr4]62−. The calculated tolerance factors are greater than unity, confirming their orthorhombic crystal symmetry because perovskites having τ > 1 and large A-site cation destroy the 3D crystal structure. The bonds between octahedral layers are open and A-site (large-sized) cations connect two adjacent octahedra through intermolecular forces to form 2D- perovskite. The understudied 2D layered halide perovskites possess direct band gap nature and their band gap lies between 2.5–3.80 eV. The valence band edge is mainly attributed to M-d, M-s, and Br-4p orbitals, whereas the conduction band is dominated by M-s and Br-4p orbitals. The optical properties tell that these 2D perovskites are excellent dielectric and are prospective materials for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Acharyya, P., Kundu, K., Biswas, K.: 2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. Nanoscale 12, 21094–21117 (2020)

    Google Scholar 

  • Ahmad, M., Rehman, G., Ali, L., Shafiq, M., Iqbal, R., Ahmad, R., Khan, T., JalaliAsadabadi, S., Maqbool, M., Ahmad: Structural, electronic and optical properties of CsPbX3 (X=Cl, Br, I) for energy storage and hybrid solar cell applications. J. Alloy. Compd. 705, 828–839 (2017)

    Google Scholar 

  • Ahmad, S., George, C., Beesley, D.J., Baumberg, J.J., Volder, M.D.: Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 18, 1856–1862 (2018)

    ADS  Google Scholar 

  • Ahmed, M.T., Islam, S., Ahmad, F.: Comparative study on the crystallite size and band gap of perovskite by diverse methods. Adv. Condens. Matter. Phys. 2022, 9535932 (2022)

    Google Scholar 

  • Akinbami, O., Ngubeni, G.N., Otieno, F., Sithole, R.K., Linganiso, E.C., Tetana, Z.N., Gqoba, S.S., Mubiayiand, K.P., Moloto, N.: The effect of temperature and time on the properties of 2D Cs2ZnBr4 perovskite nanocrystals and their application in a Schottky barrier device. J. Mater. Chem. C 9, 6022–6033 (2021)

    Google Scholar 

  • Akkerman, Q.A., Raino, G., Kovalenko, M.V., Manna, L.: Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018)

    ADS  Google Scholar 

  • Altermatt, D., Arend, H.: Low-temperature phases in Cs2CdBr4 and Cs2HgBr4. Acta Cryst. 40(4), 347–350 (1984)

    Google Scholar 

  • Andraud, C., Pelle, F., Denis, J.P., Pilla, O., Blanzat, B.: Emission bands of CsCdBr3. J. Phys. Condens. Matter. 1(8), 1511 (1989)

    ADS  Google Scholar 

  • Bati, A.S.R., Batmunkh, M., Shapter, J.G.: Emerging 2D layered materials for perovskite solar cells. Adv. Energ. Mater. 10(13), 1902253 (2020)

    Google Scholar 

  • Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71(11), 809–824 (1947)

    ADS  Google Scholar 

  • Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G.K., Marks, L.D.: WIEN2k, An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152(7), 074101 (2020)

    ADS  Google Scholar 

  • Call, M., Stoumpos, K.M., Kostina, C.C., Kanatzidis, S.S., Wessels, M.G., Strong, B.W.: Electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A=Cs, Rb; M=Bi, Sb). Chem. Mater. 29, 4129–4145 (2017)

    Google Scholar 

  • Castelli, I.E., Lastra, J.M.G., Thygesen, K.S.: Bandgap calculations and trends of organometal halide perovskites. APL Mater. 2, 081514 (2014)

    ADS  Google Scholar 

  • Chen, Q., Wu, J., Ou, X., Huang, B., Almutlaq, J., Zhumekenov, A.A., Guan, X., Han, S., Liang, L., Yi, Z.: All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018)

    ADS  Google Scholar 

  • Chouhan, L., Ghimire, S., Subrahmanyam, C., Miyasaka, T., Biju, V.: Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 49, 2869–2885 (2020)

    Google Scholar 

  • Fan, Z., Sun, K., Wang, J.: Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. 3(37), 18809–18828 (2015)

    Google Scholar 

  • Fang, Y., Dong, Q., Shao, Y., Yuan, Y., Huang, J.: Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015)

    ADS  Google Scholar 

  • Fu, Y., Zhu, H., Chen, J., Hautzinger, M.P., Zhu, X.Y., Jin, S.: Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019)

    ADS  Google Scholar 

  • Gao, Y., Wei, Z., Hsu, S.N., Boudouris, B.W., Dou, L.: Two-dimensional halide perovskites featuring semiconducting organic building blocks. Mater. Chem. Front. 4, 3400–3418 (2020)

    Google Scholar 

  • Grancini, G., Carmona, C.R., Zimmermann, I., Mosconi, E., Lee, X., Martineau, D., Narbey, S., Oswald, F., De Angelis, F., Graetzel, M.: One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 1–8 (2017)

    Google Scholar 

  • Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    ADS  Google Scholar 

  • Guo, W., Zhu, Y., Zhang, M., Du, J., Cen, Y., Liu, S., He, Y., Zhong, H., Wang, X., Shi, J.: The Dion–Jacobson perovskite CsSbCl4: a promising Pb-free solar-cell absorber with optimal bandgap 1.4 eV, strong optical absorption ~ 105 cm1, and large power-conversion efficiency above 20%. J. Mater. Chem. A 9(30), 16436–16446 (2021)

    Google Scholar 

  • Hayatullah, Murtaza, G., Khenata, R., Mohammad, S., Naeem, S., Khalid, M.N., Manza, A.: Structural, elastic, electronic and optical properties of CsMCl3 (M=Zn, Cd). Phys. B Condens. Matter. 420, 15–23 (2013)

    ADS  Google Scholar 

  • He, Y., Yan, J., Xu, L., Zhang, B., Cheng, Q., Cao, Y., Zhang, J., Tao, C., Wei, Y., Wen, K.: Perovskite light-emitting diodes with near unit internal quantum efficiency at low temperatures. Adv. Mater. 33, 2006302 (2021)

    Google Scholar 

  • Heber, J., Demirbilek, R., Altwein, M., Kübler, J., Bleeker, B., Meijerink, A.: Electronic states and interactions in pure and rare-earth doped CsCdBr3. Radiat. Eff. Defects Sol. 154, 223–229 (2001)

    ADS  Google Scholar 

  • Huang, J., Yuan, Y., Shao, Y., Yan, Y.: Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 1–19 (2017)

    ADS  Google Scholar 

  • Jiang, P., Acharya, D., Volonakis, G., Zacharias, M., Kepenekian, M., Pedesseau, L., Katan, C., Even, J.: Pb-free halide perovskites for solar cells, light-emitting diodes and photocatalysts. Apl. Mater. 10, 060902 (2022)

    ADS  Google Scholar 

  • Jong, U.G., Yu, C.J., Kim, Y.S., Kye, Y.H., Kim, C.H.: First-principles study on the material properties of the inorganic perovskite Rb1−xCsxPbI3 for solar cell applications. Phys. Rev. B 98, 125116 (2018)

    ADS  Google Scholar 

  • Kamat, P.V., Bisquert, J., Buriak, J.: Lead-free perovskite solar cells. ACS Energy Lett. 2, 904–905 (2017)

    Google Scholar 

  • Ke, W., Kanatzidis, M.G.: Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10(1), 1–4 (2019)

    ADS  Google Scholar 

  • Kim, H., Huynh, K.A., Kim, S.Y., Le, Q.V., Jang, H.W.: 2D and quasi-2D halide perovskites: applications and progress. Phys. Status Solidi RRL 14, 1900435 (2020a)

    Google Scholar 

  • Kim, H., Huynh, K.A., Kim, S.Y., Le, Q.V., Jang, H.W.: 2D and quasi-2D halide perovskites: applications and progress. Phys. Status Solidi RRL 14, 1900435 (2020b)

    Google Scholar 

  • Kityk, A.V., Zadorozhna, A.V., Shchur, Y.I., Yu, I., Lototska, M.Y., Burak., Vlokh, O. G.: Elastic properties of Cs2HgBr 4 andCs2CdBr4 crystal. Aust. J. Phys. 51, 943–57 (1998)

    ADS  Google Scholar 

  • Kostopoulou, A., Brintakis, K., Nasikas, N.K., Stratakis, E.: Perovskite nanocrystals for energy conversion and storage. Nanophotonics 8, 1607–1640 (2019)

    Google Scholar 

  • Kovaleva, I.S., Kuznetsova, I.Y., Fedorov, V.A.: Phase relationships in the CbBr-MBr2 (M=Zn, Cd, Hg) systems. Neorg. Mater. 31(12), 1584 (1995)

    Google Scholar 

  • Lavrentyev, A.A., Gabrelian, B.V., Vu, V.T., Shkumat, P.N., Parasyuk, O.V., Fedorchu, A.O., Khyzhun, O.Y.: Single crystal growth, electronic structure and optical properties of Cs2HgBr4. J. Phys. Chem. Solids 85, 254–263 (2015)

    ADS  Google Scholar 

  • Li, W., Wang, Z., Deschler, F., Gao, S., Friend, R.H.: Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 1–18 (2017)

    Google Scholar 

  • Li, J., Yu, Q., He, Y., Stoumpos, C.C., Niu, G., Trimarchi, G.G., Guo, H., Dong, G., Wang, D., Wang, L., Kanatzidis, M.G.: Cs2PbI2Cl2, all-inorganic two-dimensional ruddlesden-popper mixed halide perovskite with optoelectronic response. J. Am. Chem. Soc. 140, 11085–11090 (2018a)

    Google Scholar 

  • Li, J., Stoumpos, C.C., Trimarchi, G.G., Chung, I., Mao, L., Chen, M., Wasielewski, M.R., Wang, L., Kanatzidis, M.G.: Air-stable direct bandgap perovskite semiconductors: all-inorganic tin-based heteroleptic halides AxSnClyIz (A = Cs, Rb). Chem. Mater. 30, 4847–4856 (2018b)

    Google Scholar 

  • Liu, X.K., Xu, W., Bai, S., Jin, Y., Wang, J., Friend, R.H., Gao, F.: Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021)

    ADS  Google Scholar 

  • Liu, M., Zhao, R., Sun, F., Zhang, P., Zhang, R., Chen, Z., Li, S.: Wavelength-tunable near-infrared luminescence in mixed tin–lead halide perovskites. Front. Chem. 10, 887983 (2022)

    ADS  Google Scholar 

  • Liu, Y., Xie, Z., Zheng, W., Huang, P., Gong, Z., Zhang, W., Shao, Z., Yang, D., Chen, X.: High-efficiency narrow-band blue emission from lead-doped Cs2ZnBr4 nanocrystals. Chem. Eng. J. 460, 141683 (2023)

    Google Scholar 

  • Lv, S., Wu, Q., Meng, X., Kang, L., Zhong, C., Lin, Z., Hu, Z., Chen, X., Qin, J.: A promising new nonlinear optical crystal with high laser damage threshold for application in the IR region: synthesis, crystal structure and properties of noncentro symmetric CsHgBr3. J. Mater. Chem. C 2, 6796–6801 (2014)

    Google Scholar 

  • Ma, L., Ju, M.G., Dai, J., Zeng, X.C.: Tin and germanium based two-dimensional ruddlesden-popper hybrid perovskites for potential lead-free photovoltaic and photo-electronic applications. Nanoscale 10(24), 11314–11319 (2018)

    Google Scholar 

  • Mathieson, A., Rahil, M., Zhang, Y., Dose, W.M., Lee, J.T., Deschler, F.S., Ahmad, De Volder, M.: Ruddlesden popper 2D perovskites as Li-ion battery electrodes. Mater. Adv. 2, 3370–3377 (2021)

    Google Scholar 

  • McClure, E.T., Ball, M.R., Windl, W., Woodward, P.M.: Cs2AgBiX6, = Br, Cl): new visible light absorbing, lead-free halide perovskites semiconductors. Chem. Mater. 28, 1348–1354 (2016)

    Google Scholar 

  • McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M., Snaith, H.J.: Amixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016)

    ADS  Google Scholar 

  • Moschou, G., Koliogiorgos, A., Galanakis, I.: Electronic properties of Cs-based halide perovskites: an Ab initio study. Phys. Status Solidi A 215, 1700941 (2018)

    ADS  Google Scholar 

  • Penn, D.R.: Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    ADS  Google Scholar 

  • Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surface. Phys. Rev. Lett. 100(13), 136406 (2008)

    ADS  Google Scholar 

  • Peresh, E.Y., Lazarev, V.B., Ornichai, A.V.: Homogeneity regions, preparation and analysis of single crystals of certain compounds of the systems Cs(Tl)X-Ge (Sn Pb, Cd) X where X-Cl, Br, I. Izv. Akad. Nauk. SSSR Neorg. Mater. 21(5), 774–778 (1985)

    Google Scholar 

  • Qi, X., Zhang, Y., Ou, Q., Ha, S.T., Qiu, C.W., Zhang, H.Y., Cheng, B., Xiong, Q., Bao, Q.: Photonics and optoelectronics of 2D metal-halideperovskites. Small 14, 1800682 (2018)

    Google Scholar 

  • Ravangave, L.S., Misal, S.D., Birada, U.V.: Effect of Zn content on optical properties and tuning of optical band gap of chemically deposited Cd1-xZnxS thin films. Opt. Lett. 6(8), 1350006 (2013)

    Google Scholar 

  • Saeed, M., Haq, I.U., Saleemi, A.S., Rehman, S.U., Haq, B.U., Chaudhry, A.R., Khan, I.: First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). J. Phys. Chem. Sol. 160, 110302 (2022)

    Google Scholar 

  • Sani, F., Shafie, S., Lim, H.N., Musa, A.O.: Advancement on lead-free organic-inorganic halide perovskite solar cells. Rev. Mater. 11(6), 1008 (2018)

    Google Scholar 

  • Shamsi, J., Urban, A.S., Imran, M., Trizio, L.D., Manna, L.: Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019)

    Google Scholar 

  • Shao, M., Bie, T., Yang, L., Gao, Y., Jin, X., He, F., Zheng, N., Yu, Y., Zhang, X.: Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 34, 2107211 (2022)

    Google Scholar 

  • Sharma, I.B., Singh, D.: Solid state chemistry of Ruddlesden-Popper type complex oxides. Bull. Mater. Sci. 21, 363–374 (1998)

    Google Scholar 

  • Singh, R.K., Kumar, R., Jain, N., Kuo, M.T., Upadhyaya, C.P., Singh, J.: Exploring the impact of the Pb2+ substitution by Cd2+ on the structural and morphological properties of CH3NH3PbI3 perovskite. Appl. Nanosci. 9(8), 1953–1962 (2019)

    ADS  Google Scholar 

  • Soleimanioun, N., Rani, M., Sharma, S., Kumar, A., Tripathi, S.K.: Binary metal zinc-lead perovskite built-in air ambient: Towards lead-less and stable perovskite materials. Sol. Energy Mater. Sol. cells 191, 339–344 (2019)

    Google Scholar 

  • Tathavadekar, M., Krishnamurthy, S., Banerjee, A., Nagane, S., Gawli, Y., Suryawanshi, A., Bhat, S., Puthusseri, D., Mohite, A.D., Ogale, S.: Low-dimensional hybrid perovskites as high-performance anodes for alkali-ion batteries. J. Mater. Chem. 5, 18634–18642 (2017)

    Google Scholar 

  • Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semi local exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    ADS  Google Scholar 

  • Traor´e, B., Bouder, G., Lafargue-Dit-Hauret, W., Rocquefelte, X., Katan, C., Tran, F., Kepenekian, M.: Efficient and accurate calculation of band gaps of halide perovskites with the Tran-Blaha modified Becke-Johnson potential. Phys. Rev. B 99(3), 035139 (2019)

    ADS  Google Scholar 

  • Wang, Z., Ou, Q., Zhang, Y., Zhang, Q., Hoh, H.Y., Bao, Q.: Degradation of two-dimensional CH3NH3PbI3 perovskite and CH3NH3PbI3/graphene hetero structure. ACS Appl. Mater. Interfaces 10, 24258–24265 (2018)

    Google Scholar 

  • Wang, P.L., Han, J., Chen, Y., Zhong, H.: Halogenated—methylammonium based 3D halide perovskites. Adv. Mater. 31, 1903830 (2019)

    Google Scholar 

  • Xia, H.R., Sun, W.T., Peng, L.M.: Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chem. Commun. 51, 13787–13790 (2015)

    Google Scholar 

  • Xu, W., Hu, Q., Bai, S., Bao, C., Miao, Y., Yuan, Z., Borzda, T., Barker, A., Tyukalova, E., Hu, Z., Wang, H., Yan, Z., Liu, X., Shi, X., Uvdal, K., Fahlman, M., Zhang, W., Duchamp, M., Liu, J., Petrozza, A., Wang, J., Liu, L., Huang, W., Gao, F.: Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019)

    ADS  Google Scholar 

  • Yan, R., Gargas, D., Yang, P.: Nanowire photonics. Nat. Photonics 3, 569–576 (2009)

    ADS  Google Scholar 

  • Yang, Noh, W.S., Jeon, J.H., Kim, N.J., Ryu, Y.C., Seo, S., Seokm, J.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    ADS  Google Scholar 

  • Yao, H., Zhao, J., Li, Z., Ci, Z., Jin, Z.: Research and progress of black metastable phase CsPbI3 solar cells. Mater. Chem. Frontiers 5, 1221–1235 (2021)

    Google Scholar 

  • Zaitseva, I.Y., Kovaleva, I.S., Federov, V.A.: CsBr–Cs2ZnBr4–Cs2CdBr4–Cs2HgBr4 four component system. Russ. J. Inorg. Chem. 55(2), 261–268 (2010)

    Google Scholar 

  • Zhang, L., Liang, W.: How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers. J. Phys. Chem. Lett. 8, 1517–1523 (2017)

    Google Scholar 

  • Zhang, L., Liu, Y., Yang, Z., Liu, S.: Two-dimensional metal halide perovskites: promising candidates for light-emitting diodes. J. Energy Chem. 37, 97–110 (2019)

    Google Scholar 

  • Zhao, W., Yang, D., Yang, Z., Liu, S.: Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells. Mater. Today Energy 5, 205–213 (2017)

    Google Scholar 

  • Zhi, X.L., Jia, Y., Li, Y., Zhao, K., Cui, X., Ci, L., Zhuang, D., Wei, J.: Interfaces, a review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 11, 7639–7654 (2019)

    Google Scholar 

  • Zhou, J., Xia, Z., Molokeev, M.S., Zhang, X., Peng, D., Liu, Q.: Composition design, optical gap and stability investigations of lead-free halide double perovskite. J. Mater. Chem. A 5, 15031–15037 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the University of Malakand, Chakdara, Pakistan. The authors would like to extend their appreciation to Ajman University, Grant No. DRGS Ref. 2023-IRG-HBS-6. Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R398), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Gul Nawab: software, writing-original draft preparation. Ata Ur Rahman: writing-original draft preparation, formal analysis. Izaz Ul Haq: software, validation, data curation. Akbar Ali: investigation, methodology. Supervision, conceptualization, visualization, project administration. A. Abdel Kader: writing-reviewing and editing. A. Haj Ismail: formal analysis, visualization. Muneerah Alomar: conceptualization, methodology. Imad Khan: Supervision, project administration.

Corresponding author

Correspondence to Imad Khan.

Ethics declarations

Conflict of interest

No conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawab, G., Rahman, A.U., Haq, I.U. et al. Structural and optoelectronic properties of 2D halide perovskites Cs2MBr4 (M = Zn, Cd, Hg): a first principle study. Opt Quant Electron 56, 871 (2024). https://doi.org/10.1007/s11082-024-06710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06710-2

Keywords

Navigation