Skip to main content
Log in

Hirota–Maccari system arises in single-mode fibers: abundant optical solutions via the modified auxiliary equation method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This research paper’s primary goal is to find fresh approaches to the Hirota–Maccari system. This system explains the dynamical features of the femto-second soliton pulse in single-mode fibers. The bright soliton, dark soliton, dark-bright soliton, dark singular, bright singular, periodic soliton, and singular solutions are developed utilizing the modified auxiliary equation technique. To make the physical significance of each unique solution clearer, it is mapped in both 2D and 3D. The primary Hirota–Maccari system is being verified by all new solutions, and the constraint condition is also provided. The obtained optical solitons may be important for the analysis of nonlinear processes in optic fiber communication and signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  • Akram, G., et al.: Abundant solitary wave solutions of Gardner’s equation using three effective integration techniques. AIMS Math. 8(4), 8171–8184 (2023)

    Article  MathSciNet  Google Scholar 

  • Akram, G., Sajid, N.: The investigation of exact solutions of Korteweg-de vries equation with dual power law nonlinearity using the \(\exp _a\) and \(\exp (-\Phi (\xi ))\) methods. Int. J. Comput. Math. 99(3), 629–640 (2022)

  • Akram, G., Sadaf, M., Sarfraz, M., Anum, N.: Dynamics investigation of (1+ 1)-dimensional time-fractional potential Korteweg-de Vries equation. Alex. Eng. J. 61(1), 501–509 (2022a)

    Article  Google Scholar 

  • Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik 251, 168163 (2022b)

    Article  ADS  Google Scholar 

  • Akram, G., Sadaf, M., Khan, M.A.U.: Soliton solutions of Lakshmanan–Porsezian–Daniel model using modified auxiliary equation method with parabolic and anti-cubic law of nonlinearities. Optik 252, 168372 (2022c)

    Article  ADS  Google Scholar 

  • Akram, G., Sadaf, M., Zainab, I.: New graphical observations for KdV equation and KdV-Burgers equation using modified auxiliary equation method. Mod. Phys. Lett. B 36(01), 2150520 (2022d)

    Article  ADS  MathSciNet  Google Scholar 

  • Ali, K.K., Yokus, A., Seadawy, A.R., Yilmazer, R.: The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function. Chaos Solitons Fractals 161, 112381 (2022)

    Article  MathSciNet  Google Scholar 

  • AL-Jawary, M.A., Radhi, G.H., Ravnik, J.: Daftardar–Jafari method for solving nonlinear thin film flow problem. Arab. J. Basic Appl. Sci. 25, 20–27 (2018)

    Article  Google Scholar 

  • Alquran, M.: New interesting optical solutions to the quadratic–cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Opt. Quantum Electron. 54(10), 666 (2022)

    Article  Google Scholar 

  • Alquran, M.: Classification of single-wave and bi-wave motion through fourth-order equations generated from the Ito model. Phys. Scr. 98(8), 085207 (2023)

    Article  ADS  Google Scholar 

  • Alquran, M., Alhami, R.: Analysis of lumps, single-stripe, breather-wave, and two-wave solutions to the generalized perturbed-KdV equation by means of Hirota’s bilinear method. Nonlinear Dyn. 109(3), 1985–1992 (2022)

    Article  Google Scholar 

  • Alquran, M., Ali, M., Jadallah, H.: New topological and non-topological unidirectional-wave solutions for the modified-mixed KdV equation and bidirectional-waves solutions for the Benjamin Ono equation using recent techniques. J. Ocean Eng. Sci. 7(2), 163–169 (2022)

    Article  Google Scholar 

  • Alquran, M., Najadat, O., Ali, M., Qureshi, S.: New kink-periodic and convex–concave-periodic solutions to the modified regularized long wave equation by means of modified rational trigonometric–hyperbolic functions. Nonlinear Eng. 12(1), 20220307 (2023)

    Article  ADS  Google Scholar 

  • Alquran, M., Ali, M., Gharaibeh, F., Qureshi, S.: Novel investigations of dual-wave solutions to the Kadomtsev–Petviashvili model involving second-order temporal and spatial-temporal dispersion terms. Partial Differ. Equ. Appl. Math. 8, 100543 (2023)

    Article  Google Scholar 

  • Aminikhah, H., Refahi Sheikhani, A.H., Rezazadeh, H.: Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives. Sci. Iran. (2017). 

    Article  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D.: Exact bright–dark solitary wave solutions of the higher-order cubic–quintic nonlinear Schrödinger equation and its stability. Optik (2017). 

    Article  ADS  Google Scholar 

  • Baskonus, H.M., Bulut, H.: On the numerical solutions of some fractional ordinary differential equations by fractional Adams–Bashforth–Moulton method. Open Math. (2015). https://doi.org/10.1515/math-2015-0052

    Article  MathSciNet  Google Scholar 

  • Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Random Complex Med. (2016). https://doi.org/10.1080/17455030.2015.1132860

    Article  ADS  MathSciNet  Google Scholar 

  • Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the novel wave behaviors to the coupled nonlinear Maccari’s system with complex structure. Optik (2017). https://doi.org/10.1016/j.ijleo.2016.10.135

    Article  ADS  Google Scholar 

  • Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by the compatible techniques. Int. J. Math. Comput. Eng. 1, 149–170 (2023)

    Article  Google Scholar 

  • Bulut, H., Baskonus, H.M., Pandir, Y.: The modified trial equation method for fractional wave equation and time fractional generalized burgers equation. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/636802

  • Cao, F., Lü, X., Zhou, Y.-X., Cheng, X.-Y.: Modified SEIAR infectious disease model for Omicron variants spread dynamics. Nonlinear Dyn. 111, 14597–14620 (2023)

    Article  Google Scholar 

  • Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: Solitons in an inhomogeneous Murnaghan’s rod. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12085-y

    Article  Google Scholar 

  • Chen, Y., Lü, X.: Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev–Petviashvili equation. Phys. Fluids 35(10), 106613 (2023)

    Article  ADS  Google Scholar 

  • Chen, Y., Lü, X., Wang, X.-L.: Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+ 1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 138(6), 492 (2023)

    Article  Google Scholar 

  • Chen, S.-J., Yin, Y.-H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun. Nonlinear Sci. Numer. Simul. 130, 107205 (2024)

    Article  MathSciNet  Google Scholar 

  • Dewasurendra, M., Vajravelu, K.: On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer. Appl. Math. Nonlinear Sci. 20, 3 (2018). https://doi.org/10.21042/amns.2018.1.00001

    Article  MathSciNet  Google Scholar 

  • El-Borai, M.M., El-Owaidy, H.M., Ahmed, H.M., Arnous, A.H.: Soliton solutions of Hirota equation and Hirota–Maccari system. New Trends Math. Sci. 4(3), 231–238 (2016)

    Article  MathSciNet  Google Scholar 

  • Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo (2016). https://doi.org/10.1007/s10092-015-0158-8

    Article  MathSciNet  Google Scholar 

  • Gao, W., Ismael, H.F., Husien, A.M., Bulut, H., Baskonus, H.M.: Optical soliton solutions of the cubic–quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law. Appl. Sci. 10(1), 219 (2019). https://doi.org/10.3390/app10010219

    Article  Google Scholar 

  • Gao, D., Lü, X., Peng, M.-S.: Study on the (2+ 1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation. Phys. Scr. 98(9), 95225 (2023)

    Article  Google Scholar 

  • Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B (2019). https://doi.org/10.1142/s0217984919501069

  • Hammouch, Z., Mekkaoui, T.: Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives. J. MESA 5(4), 489–498 (2014)

    Google Scholar 

  • Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero–Bogoyavlenskii–Schiff equation in (2 + 1) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12096-8

    Article  Google Scholar 

  • Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805–809 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • Hirota, R., Ito, M.: A direct approach to multi-periodic wave solutions to nonlinear evolution equations. J. Phys. Soc. Jpn. (1981). https://doi.org/10.1143/JPSJ.50.338

    Article  ADS  Google Scholar 

  • Hoseini, S.M., Marchant, T.R.: Soliton perturbation theory for a higher order Hirota equation. Math. Comput. Simul. 80(4), 770–778 (2009)

    Article  MathSciNet  Google Scholar 

  • Hussain, A., Ali, H., Zaman, F., Abbas, N.: New closed form solutions of some nonlinear pseudo-parabolic models via a new extended direct algebraic method. Int. J. Math. Comput. Eng. 1(2), 149–170 (2023)

    Google Scholar 

  • Ilhan, O.A., Bulut, H., Sulaiman, T.A., Baskonus, H.M.: Dynamic of solitary wave solutions in some nonlinear pseudoparabolic models and Dodd–Bullough–Mikhailov equation. Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1187-3

    Article  ADS  Google Scholar 

  • Ismael, H.F.: Carreau–Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation. Int. J. Adv. Appl. Sci. J. 6(2), 81–86 (2017). https://doi.org/10.1371/journal.pone.0002559

    Article  Google Scholar 

  • Ismael, H.F., Ali, K.K.: MHD Casson flow over an unsteady stretching sheet. Adv. Appl. Fluid Mech. 20(4), 533–541 (2017). https://doi.org/10.17654/FM020040533

    Article  Google Scholar 

  • Ismael, H.F., Arifin, N.M.: Flow and heat transfer in a Maxwell liquid sheet over a stretching surface with thermal radiation and viscous dissipation. JP J. Heat Mass Transf. 15(4), 847–866 (2018). https://doi.org/10.17654/HM015040847

    Article  Google Scholar 

  • Ismael, H.F., Bulut, H., Baskonus, H.M.: Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and \((m+ ({G^{\prime }}/{G}))\)-expansion method. Pramana 94(1), 1–9 (2020)

  • Javeed, S., Hincal, E.: Solving coupled non-linear higher order BVPs using improved shooting method. Int. J. Math. Comput. Eng. 2(2), 25–38 (2024)

    Google Scholar 

  • Kocak, Z.F., Bulut, H., Yel, G.: The solution of fractional wave equation by using modified trial equation method and homotopy analysis method. In: AIP Conference Proceedings, vol. 1637, no. 1, pp. 504–512 (2014). https://doi.org/10.1063/1.4904617

  • Li-Na, S., Hong-Qing, Z.: Extended Sine–Gordon equation method and its application to Maccari’s system. Commun. Theor. Phys. 44(5), 783 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Liu, K., Lü, X., Gao, F., Zhang, J.: Expectation-maximizing network reconstruction and most applicable network types based on binary time series data. Phys. D Nonlinear Phenom. 454, 133834 (2023)

    Article  MathSciNet  Google Scholar 

  • Lu, D., Seadawy, A., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik (2017). https://doi.org/10.1016/j.ijleo.2017.04.032

    Article  ADS  Google Scholar 

  • Maccari, A.: A generalized Hirota equation in 2+1 dimensions. J. Math. Phys. 39(12), 6547–6551 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Oruç, Ö., Bulut, F., Esen, A.: Numerical solution of the KdV equation by Haar wavelet method. Pramana 87(6), 94 (2016)

    Article  ADS  Google Scholar 

  • Osman, M.S., Ghanbari, B.: New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik (2018). https://doi.org/10.1016/j.ijleo.2018.08.007

    Article  ADS  Google Scholar 

  • Sadaf, M., Akram, G., Dawood, M.: An investigation of fractional complex Ginzburg–Landau equation with Kerr law nonlinearity in the sense of conformable, beta and M-truncated derivatives. Opt. Quantum Electron. 54(4), 248 (2022)

    Article  Google Scholar 

  • Sulaiman, T.A., Yel, G., Bulut, H.: M-fractional solitons and periodic wave solutions to the Hirota–Maccari system. Mod. Phys. Lett. B 1950052 (2019). https://doi.org/10.1142/s0217984919500520

  • Sulaiman, T.A., Bulut, H., Yokus, A., Baskonus, H.M.: On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering. Indian J. Phys. (2019). https://doi.org/10.1007/s12648-018-1322-1

    Article  ADS  Google Scholar 

  • Tariq, H., et al.: Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities. Results Phys. 30, 104839 (2021)

    Article  Google Scholar 

  • Tarla, S., Ali, K.K., Yilmazer, R., Yusuf, A.: Investigation of the dynamical behavior of the Hirota–Maccari system in single-mode fibers. Opt. Quantum Electron. 54(10), 613 (2022)

    Article  Google Scholar 

  • Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fractals (2003). https://doi.org/10.1016/S0960-0779(02)00483-6

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, M., Li, X.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals (2005). https://doi.org/10.1016/j.chaos.2004.09.044

    Article  ADS  MathSciNet  Google Scholar 

  • Wazwaz, A.-M.: Abundant soliton and periodic wave solutions for the coupled Higgs field equation, the Maccari system and the Hirota–Maccari system. Phys. Scr. 85(6), 65011 (2012)

    Article  Google Scholar 

  • Yang, X., Yang, Y., Cattani, C., Zhu, C.M.: A new technique for solving the 1-D Burgers equation. Therm. Sci. (2017). https://doi.org/10.2298/TSCI17S1129Y

    Article  Google Scholar 

  • Yin, Y.-H., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the CQ-NLSE. Commun. Nonlinear Sci. Numer. Simul. 126, 107441 (2023)

    Article  MathSciNet  Google Scholar 

  • Yin, Y.-H., Lü, X., Jiang, R., Jia, B., Gao, Z.: Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS. Phys. A Stat. Mech. Appl. 635, 129494 (2024)

    Article  MathSciNet  Google Scholar 

  • Yousif, M.A., Mahmood, B.A., Ali, K.K., Ismael, H.F.: Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet. Int. J. Pure Appl. Math. 107(2), 289–300 (2016). https://doi.org/10.12732/ijpam.v107i2.1

    Article  Google Scholar 

  • Zhang, S.: Exp-function method for solving Maccari’s system. Phys. Lett. A 371(1–2), 65–71 (2007)

    Article  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. The final manuscript was read and approved by the authors.

Corresponding author

Correspondence to Hajar F. Ismael.

Ethics declarations

Conflict of interest

The authors declare that they have neither financial nor conflict interest.

Ethical approval

The authors state that this research paper complies with ethical standards. This research paper does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismael, H.F., Baskonus, H.M. & Shakir, A.P. Hirota–Maccari system arises in single-mode fibers: abundant optical solutions via the modified auxiliary equation method. Opt Quant Electron 56, 858 (2024). https://doi.org/10.1007/s11082-024-06698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06698-9

Keywords

Navigation