Skip to main content
Log in

Wave structures of the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation: analytical insights utilizing two high impact methods

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we employ the unified method and the Sardar subequation method to systematically analyze various wave structures within the (3+1)-dimensional extended quantum nonlinear Zakharov–Kuznetsov equation, incorporating test function approaches. The equation, integral to understanding the intricate dynamics of quantum plasma in diverse scenarios like astrophysical environments, fusion devices, space plasma, and quantum fluids, serves as a foundation model for studying nonlinear waves, structures, and the collective quantum behavior of particles. Our study yields a spectrum of solutions, including bright, dark, singular, periodic, kink, and anti-kink solutions, and we conduct a modulation instability analysis through linear stability techniques. Furthermore, we elucidate the physical implications of our findings using 3-dimensional, 2-dimensional, and contour profiles with relevant parameters, exclusively implementing the symbolic software Mathematica for computations. The obtained results exhibit exceptional merit when compared to existing literature, showcasing the effectiveness of our approach in providing a robust and intensive mathematical framework for addressing complex nonlinear wave phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Akinyemi, L., Akpan, U., Veeresha, P., Rezazadeh, H., İnç, M.: Computational techniques to study the dynamics of generalized unstable nonlinear schrödinger equation. J. Ocean Eng Sci. 1–10 (2022). https://doi.org/10.1016/j.joes.2022.02.011

  • Akram, S., Ahmad, J., Alkarni, S., Shah, N.A., et al.: Exploration of solitary wave solutions of highly nonlinear kdv-kp equation arise in water wave and stability analysis. Results Phys. 54, 1–10 (2023)

    Article  Google Scholar 

  • Ali, K.K., Yilmazer, R., Yokus, A., Bulut, H.: Analytical solutions for the (3+ 1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics. Phys. A 548, 124327 (2020). https://doi.org/10.1016/j.physa.2020.124327

    Article  MathSciNet  Google Scholar 

  • Ali, A., Ahmad, J., Javed, S.: Exploring the dynamic nature of soliton solutions to the fractional coupled nonlinear Schrödinger model with their sensitivity analysis. Opt. Quant. Electron. 55(9), 810 (2023). https://doi.org/10.1007/s11082-023-05033-y

    Article  Google Scholar 

  • Areshi, M., Seadawy, A.R., Ali, A., AlJohani, A.F., Alharbi, W., Alharbi, A.F.: Construction of solitary wave solutions to the (3+ 1)-dimensional nonlinear extended and modified quantum Zakharov–Kuznetsov equations arising in quantum plasma physics. Symmetry 15(1), 248 (2023)

    Article  ADS  Google Scholar 

  • Arshed, S., Akram, G., Sadaf, M., Khan, A.: Solutions of (3+ 1)-dimensional extended quantum nonlinear Zakharov–Kuznetsov equation using the generalized Kudryashov method and the modified Khater method. Opt. Quant. Electron. 55(10), 922 (2023). https://doi.org/10.1007/s11082-023-05137-5

    Article  Google Scholar 

  • Asjad, M.I., Inc, M., Iqbal, I.: Exact solutions for new coupled Konno–Oono equation via sardar subequation method. Opt. Quant. Electron. 54(12), 798 (2022a). https://doi.org/10.1007/s11082-022-04208-3

    Article  Google Scholar 

  • Asjad, M.I., Munawar, N., Muhammad, T., Hamoud, A.A., Emadifar, H., Hamasalh, F.K., Azizi, H., Khademi, M., et al.: Traveling wave solutions to the Boussinesq equation via sardar sub-equation technique. AIMS Math. 7(6), 11134–11149 (2022b)

    Article  MathSciNet  Google Scholar 

  • Baskonus, H.M., Bulut, H., Sulaiman, T.A.: Investigation of various travelling wave solutions to the extended (2+ 1)-dimensional quantum zk equation. Eur. Phys. J. Plus 132, 1–8 (2017)

    Article  Google Scholar 

  • Biagioni, H.A., Linares, F.: Well-posedness results for the modified Zakharov–Kuznetsov equation. In: Nonlinear equations: methods, models and applications, 181–189. Springer (2003)

  • Bilal, M., Ahmad, J.: Investigation of diverse genres exact soliton solutions to the nonlinear dynamical model via three mathematical methods. J. Ocean Eng. Sci. (2022a). https://doi.org/10.1016/j.joes.2022.05.031

    Article  Google Scholar 

  • Bilal, M., Ahmad, J.: Dynamical nonlinear wave structures of the predator-prey model using conformable derivative and its stability analysis. Pramana 96(3), 149 (2022b). https://doi.org/10.1007/s12043-022-02378-z

    Article  ADS  Google Scholar 

  • Chou, D., Ur Rehman, H., Amer, A., Amer, A.: New solitary wave solutions of generalized fractional Tzitzéica-type evolution equations using sardar sub-equation method. Opt. Quant. Electron. 55(13), 1148 (2023). https://doi.org/10.1007/s11082-023-05425-0

    Article  Google Scholar 

  • Cinar, M., Secer, A., Ozisik, M., Bayram, M.: Derivation of optical solitons of dimensionless Fokas–Lenells equation with perturbation term using sardar sub-equation method. Opt. Quant. Electron. 54(7), 402 (2022). https://doi.org/10.1007/s11082-022-03819-0

    Article  Google Scholar 

  • Esen, H., Ozdemir, N., Secer, A., Bayram, M.: On solitary wave solutions for the perturbed Chen–Lee–Liu equation via an analytical approach. Optik 245, 167641 (2021). https://doi.org/10.1016/j.ijleo.2021.167641

    Article  ADS  Google Scholar 

  • Faisal, K., Abbagari, S., Pashrashid, A., Houwe, A., Yao, S.-W., Ahmad, H.: Pure-cubic optical solitons to the schrödinger equation with three forms of nonlinearities by sardar subequation method. Results Phys. 48, 106412 (2023)

    Article  Google Scholar 

  • Fan, L., Bao, T.: Bell polynomials and superposition wave solutions of Hirota-Satsuma coupled KdV equations. Wave Motion. (2024). https://doi.org/10.1016/j.wavemoti.2024.103271

    Article  MathSciNet  Google Scholar 

  • Higazy, M., Muhammad, S., Al-Ghamdi, A., Khater, M.M.: Computational wave solutions of some nonlinear evolution equations. J. Ocean Eng. Sci. 1–7 (2022). https://doi.org/10.1016/j.joes.2022.01.007

  • Humbu, I., Muatjetjeja, B., Motsumi, T., Adem, A.: Solitary waves solutions and local conserved vectors for extended quantum Zakharov–Kuznetsov equation. Eur. Phys. J. Plus 138(9), 873 (2023). https://doi.org/10.1140/epjp/s13360-023-04470-8

    Article  Google Scholar 

  • Hussain, R., Imtiaz, A., Rasool, T., Rezazadeh, H., İnç, M.: Novel exact and solitary solutions of conformable Klein–Gordon equation via sardar-subequation method. J. Ocean Eng. Sci. 1–7 (2022). https://doi.org/10.1016/j.joes.2022.04.036

  • Hussein, N., Tawfiq, L.: Solitary wave solution of zakharov-kuznetsov equation. In: AIP Conference Proceedings, volume 2398. AIP Publishing (2022)

  • Ilhan, O.A., Manafian, J. and Shahriari, M.: Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev–Petviashvili equation. 78(8), 2429–2448 (2019)

  • Javed, S., Ali, A., Ahmad, J., Hussain, R.: Study the dynamic behavior of bifurcation, chaos, time series analysis and soliton solutions to a Hirota model. Opt. Quant. Electron. 55(12), 1114 (2023). https://doi.org/10.1007/s11082-023-05358-8

    Article  Google Scholar 

  • Karakoç, S.B.G., Mehanna, M., et al.: Exact traveling wave solutions of the Schamel-KdV equation with two different methods. Univ. J. Math. Appl., 6(2), 65–75 (2023)

  • Lu, D., Seadawy, A., Arshad, M., Wang, J.: New solitary wave solutions of (3+ 1)-dimensional nonlinear extended Zakharov–Kuznetsov and modified kdv-Zakharov–Kuznetsov equations and their applications. Results Phys. 7, 899–909 (2017)

    Article  ADS  Google Scholar 

  • Majeed, A., Rafiq, M.N., Kamran, M., Abbas, M., Inc, M.: Analytical solutions of the fifth-order time fractional nonlinear evolution equations by the unified method. Mod. Phys. Lett. B 36(02), 2150546 (2022). https://doi.org/10.1142/S0217984921505461

    Article  MathSciNet  ADS  Google Scholar 

  • Mohamad Jawad, A.J., Mirzazadeh, M., Biswas, A.: Solitary wave solutions to nonlinear evolution equations in mathematical physics. Pramana, 83, 457–471 (2014)

  • Nisar, K.S., Ilhan, O.A., Abdulazeez, S.T., Manafian, J., Mohammed, S.A., Osman, M.S.: Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. Results Phys. 21, 103769 (2021)

    Article  Google Scholar 

  • Nisar, K.S., Ilhan, O.A., Manafian, J., Shahriari, M., Soybaş, D.: Analytical behavior of the fractional Bogoyavlenskii equations with conformable derivative using two distinct reliable methods. Results Phys. 22, 103975 (2021)

    Article  Google Scholar 

  • Onder, I., Secer, A., Ozisik, M., Bayram, M.: On the optical soliton solutions of Kundu–Mukherjee–Naskar equation via two different analytical methods. Optik 257, 168761 (2022). https://doi.org/10.1016/j.ijleo.2022.168761

    Article  ADS  Google Scholar 

  • Rasool, T., Hussain, R., Al Sharif, M.A., Mahmoud, W., Osman, M.: A variety of optical soliton solutions for the m-truncated paraxial wave equation using sardar-subequation technique. Opt. Quant. Electron. 55(5), 396 (2023). https://doi.org/10.1007/s11082-023-04655-6

    Article  Google Scholar 

  • Raut, S., Roy, S., Saha, S., Das, A.N.: Effect of kinematic viscosity on ion acoustic waves in superthermal plasma comprising cylindrical and spherical geometry. Int. J. Appl. Comput. Math. 8(4), 196 (2022). https://doi.org/10.1007/s40819-022-01418-x

    Article  MathSciNet  Google Scholar 

  • Raza, N., Rafiq, M.H., Kaplan, M., Kumar, S., Chu, Y.-M.: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations. Results Phys. 22, 103979 (2021)

    Article  Google Scholar 

  • Rehman, S.U, Ahmad, J.: Dispersive multiple lump solutions and soliton’s interaction to the nonlinear dynamical model and its stability analysis. Eur. Phys. J. D 76(1), 14 (2022). https://doi.org/10.1140/epjd/s10053-022-00351-4

    Article  ADS  Google Scholar 

  • Rehman, H.U., Iqbal, I., Subhi Aiadi, S., Mlaiki, N., Saleem, M.S.: Soliton solutions of Klein–Fock–Gordon equation using sardar subequation method. Mathematics 10(18), 3377 (2022)

    Article  Google Scholar 

  • Rehman, H.U., Akber, R., Wazwaz, A.-M., Alshehri, H.M., Osman, M.: Analysis of Brownian motion in stochastic Schrödinger wave equation using sardar sub-equation method. Optik 289, 171305 (2023). https://doi.org/10.1016/j.ijleo.2023.171305

    Article  ADS  Google Scholar 

  • Rizvi, S., Seadawy, A.R., Younis, M., Ali, I., Althobaiti, S., Mahmoud, S.F.: Soliton solutions, Painleve analysis and conservation laws for a nonlinear evolution equation. Results Phys. 23, 103999 (2021)

    Article  Google Scholar 

  • Sabry, R., Moslem, W., Haas, F., Ali, S., Shukla, P.K.: Nonlinear structures: Explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma. Phys. Plasmas 15(12), 1–17 (2008)

    Article  Google Scholar 

  • Saliou, Y., Abbagari, S., Houwe, A., Osman, M., Yamigno, D.S., Crépin, K.T., Inc, M.: W-shape bright and several other solutions to the (3+ 1)-dimensional nonlinear evolution equations. Mod. Phys. Lett. B 35(30), 2150468 (2021). https://doi.org/10.1142/S0217984921504686

    Article  MathSciNet  ADS  Google Scholar 

  • Sarkar, T., Roy, S., Raut, S., Mali, P.C.: Studies on the dust acoustic shock, solitary, and periodic waves in an unmagnetized viscous dusty plasma with two-temperature ions. Braz. J. Phys. 53(1), 12 (2023). https://doi.org/10.1007/s13538-022-01221-5

    Article  ADS  Google Scholar 

  • Shivamoggi, B.K.: The Painlevé analysis of the Zakharov–Kuznetsov equation. Phys. Scr. 42(6), 641 (1990). https://doi.org/10.1088/0031-8949/42/6/001

    Article  MathSciNet  ADS  Google Scholar 

  • Ullah, M.S., Mostafa, M., Ali, M.Z., Roshid, H.-O., Akter, M.: Soliton solutions for the zoomeron model applying three analytical techniques. PLoS ONE 18(7), e0283594 (2023)

    Article  Google Scholar 

  • Ullah, N., Asjad, M.I., Hussanan, A., Akgül, A., Alharbi, W.R., Algarni, H., Yahia, I.: Novel waves structures for two nonlinear partial differential equations arising in the nonlinear optics via sardar-subequation method. Alex. Eng. J. 71, 105–113 (2023)

    Article  Google Scholar 

  • Ullah, M.S., Roshid, H.O., Ali, M.Z.: New wave behaviors and stability analysis for the (2+ 1)-dimensional zoomeron model. Opt. Quant. Electron. 56(2), 240 (2024). https://doi.org/10.1007/s11082-023-05804-7

    Article  Google Scholar 

  • Veeresha, P., Prakasha, D.: Solution for fractional Zakharov–Kuznetsov equations by using two reliable techniques. Chin. J. Phys. 60, 313–330 (2019)

    Article  MathSciNet  Google Scholar 

  • Wang, K.-J.: A variational principle for the (3+ 1)-dimensional extended quantum Zakharov–Kuznetsov equation in plasma physics. Europhys. Lett. 132(4), 44002 (2020). https://doi.org/10.1209/0295-5075/132/44002

    Article  ADS  Google Scholar 

  • Wang, K.-J., Wang, G.-D.: Study on the periodic solution of the (3+ 1)-dimensional extended quantum Zakharov–Kuznetsov equation in plasma physics. Europhys. Lett. 137(1), 12002 (2022). https://doi.org/10.1209/0295-5075/ac1aab

    Article  ADS  Google Scholar 

  • Wang, X., Javed, S.A., Majeed, A., Kamran, M., Abbas, M.: Investigation of exact solutions of nonlinear evolution equations using unified method. Mathematics 10(16), 2996 (2022)

    Article  Google Scholar 

  • Zayed, E.M., Shahoot, A.M., Alurrfi, K.A.: The \((g^{\wedge } g, 1) g^{\prime }g, 1 g\)-expansion method and its applications for constructing many new exact solutions of the higher-order nonlinear Schrödinger equation and the quantum Zakharov–Kuznetsov equation. Opt. Quant. Electron. 50, 1–18 (2018)

    Article  Google Scholar 

  • Zeng, B.: Feedback control for nonlinear evolutionary equations with applications. Nonlinear Anal. Real World Appl. 66, 103535 (2022). https://doi.org/10.1016/j.nonrwa.2022.103535

    Article  MathSciNet  Google Scholar 

  • Zhou, X., Ilhan, O.A., Manafian, J., Singh, G., Tuguz, N.S.: N-lump and interaction solutions of localized waves to the (2+ 1)-dimensional generalized KDKK equation. J. Geom. Phys. 168, 104312 (2021). https://doi.org/10.1016/j.geomphys.2021.104312

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research project in question was undertaken without any dedicated financial support or grant from public, commercial, or not-for-profit entities. It was entirely self-funded and conducted independently without reliance on external financial assistance from government agencies, businesses, or non-profit organizations.

Author information

Authors and Affiliations

Authors

Contributions

Jamshad Ahmad played a multifaceted role, contributing to tasks such as administration, validation, data visualization, formal analysis, data curation, investigative work, manuscript supervision, review, and editing. Tayyaba Younas was actively involved in various aspects of the project, including conceptualization, methodology development, software implementation, data visualization, and crafting the original draft of the document.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors state that there are no identifiable conflicts of financial interests or personal relationships that might have given the appearance of influencing the research presented in this paper.

Consent for publication

All of the authors have reached a consensus and provided their full approval for the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Younas, T. Wave structures of the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation: analytical insights utilizing two high impact methods. Opt Quant Electron 56, 882 (2024). https://doi.org/10.1007/s11082-024-06691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06691-2

Keywords

Navigation