Skip to main content
Log in

Investigating the effect of modulation depth of refractive index in cascaded FBGs for dual sensing of strain and temperature

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Simultaneous measurement of strain and temperature is crucial for various applications that operate in diverse environments. Fiber Bragg gratings, known for their sensitivity to both strain and temperature, can serve as effective sensors for such simultaneous measurements. However, achieving discrimination between strain and temperature in FBG sensors requires the incorporation of a distinct mechanism in their design. This present a novel approach to dual sensing by exploring the impact of modulation depth of refractive index in cascaded FBGs. Modulation depth of refractive index is a significant spectral parameter of FBGs, influencing the grating’s strength. By cascading two gratings with different modulation depths, the reflection spectrum exhibits two peaks, and their amplitudes are influenced by the modulation depth. Notably, the proposed sensor design eliminates the need for complicated packaging, which is often time-consuming and expensive. The study includes a simulation analysis of the proposed sensor, consisting of two FBGs with distinct modulation depths of refractive index. This technique demonstrates a linear variation in both Bragg wavelength and normalized peak difference (M) in response to changes in strain and temperature. The obtained strain and temperature sensitivities in this study were 1.19 pm/με and 11.4 pm/°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Agarwal, S., Mishra, V.: Characterization of fiber Bragg grating for maximum reflectivity based on modulation depth of refractive index. Opt. Int. J. Light Electron Opt. 125(18), 5192–5195 (2014)

    Google Scholar 

  • Akaya, N., Oares, M.A.G.U.S., Anaka, S.A.T.: Simultaneous multi-point measurement of strain and temperature utilizing Fabry–Perot interferometric sensors composed of low reflective fiber Bragg gratings in a polarization-maintaining fiber. Opt. Express 28(9), 13104–13115 (2020)

    ADS  Google Scholar 

  • Ali, M.M., Islam, M.R., Lim, K.S., Gunawardena, D.S., Yang, H.Z., Ahmad, H.: PCF-cavity FBG Fabry–Perot resonator for simultaneous measurement of pressure and temperature. IEEE Sens. J. 15(12), 6921–6925 (2015)

    ADS  Google Scholar 

  • Arslan, M.M., Bayrak, G.: Temperature compensation of FBG sensors via sensor packaging approach for harsh environmental applications. J. Sci. 35(4), 1471–1482 (2022)

    Google Scholar 

  • Ashry, I., Elrashidi, A., Mahros, A., Alhaddad, M., Elleithy, K.: Investigating the performance of apodized fiber Bragg gratings for sensing applications In: Proceedings of 2014 zone 1 conference of the American society for engineering education (ASEE Zone 1), pp. 1–5. (2014)

  • Au, H.Y., Khijwania, S.K., Fu, H.Y., Chung, W.H., Tam, H.Y.: Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range. J. Light. Technol. 29(11), 1714–1720 (2011)

    ADS  Google Scholar 

  • Basumallick, N., Biswas, P., Dasgupta, K., Bandyopadhyay, S.: Design optimization of fiber Bragg grating accelerometer for maximum sensitivity. Sens. Actuators A Phys. 194, 31–39 (2013)

    Google Scholar 

  • Campanella, C.E., Cuccovillo, A., Campanella, C., Yurt, A., Passaro, V.M.N.: Fibre Bragg grating based strain sensors : review of technology and applications. Sensors 18(3115), 1–27 (2018)

    Google Scholar 

  • Caucheteur, C., Chah, K., Lhomme, F., Blondel, M., Megret, P.: Characterization of twin Bragg gratings for sensor application. In: Proc. of SPIE. 5459, 89–100 (2004)

  • Chah, K., Kinet, D., Caucheteur, C.: Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings. Nat. Publ. Gr. 6, 1–6 (2016)

  • Chang, H., Yeh, C., Huang, C., Fu, M., Chow, C., Liu, W.: In-fiber long-period grating and fiber Bragg grating-based sensor for simultaneously monitoring remote temperature and stress. Sens. Mater. 30(1), 23–32 (2018)

    Google Scholar 

  • Dhingra, I., Kaur, G., Kaler, R.S.: Design and analysis of fiber Bragg grating sensor to monitor strain and temperature for structural health monitoring. Opt. Quantum Electron. 53(11), 1–9 (2021)

    Google Scholar 

  • Ding, Z., Tan, Z., Gao, Y., Wu, Y., Yin, B.: Strain and temperature discrimination using a fiber Bragg grating concatenated with PANDA polarization-maintaining fiber in a fiber loop mirror. Opt. Int. J. Light Electron Opt. 221, 165352, 1–8 (2020)

    Google Scholar 

  • Du, W., Tao, X., Tam, H.: Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol. Lett. 11(1), 105–107 (1999a)

    ADS  Google Scholar 

  • Du, W., Tao, X., Tam, H.Y.: Temperature independent strain measurement with a fiber grating tapered cavity sensor. IEEE Photonics Technol. Lett. 11(5), 596–598 (1999b)

    ADS  Google Scholar 

  • Elsmann, T., Habisreuther, T., Graf, A., Rothhardt, M., Schmidt, M.A.: First-order sapphire fiber Bragg gratings for high temperature sensing. Appl. Therm. Eng. 91(5), 53–58 (2015)

    Google Scholar 

  • Erdogan, T.: Fiber grating spectra. J. Light. Technol. 15(8), 1277–1294 (1997)

    ADS  Google Scholar 

  • Feng, Z., Cheng, Y., Chen, M., Yuan, L., Hong, D., Li, L.: Temperature-compensated multi-point strain sensing based on cascaded FBG and optical FMCW interferometry. Sensors 22(3970), 1–12 (2022)

    Google Scholar 

  • Ferreira, L., Farahi, F.: Simultaneous measurement of strain and temperature using interferometrically simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors. Opt. Eng. 39(8), 2226–2234 (2000)

    ADS  Google Scholar 

  • Gao, X., et al.: A dual-parameter fiber sensor based on few-mode fiber and fiber Bragg grating for strain and temperature sensing. Opt. Commun.Commun. 454, 1–5 (2020)

    Google Scholar 

  • Gholampour, M., Mansoursamaei, M., Malakzadeh, A.: Comparison of FWHM and peak power techniques for simultaneous measurement of strain and temperature in FBG. Opt. Quantum Electron. 55(117), 1–9 (2023)

    Google Scholar 

  • Guan, Z., Member, S., Chen, D., He, S., Member, S.: Coherence multiplexing of distributed sensors based on pairs of fiber Bragg gratings of low reflectivity. J. Light. Technol. 25(8), 2143–2148 (2007)

    ADS  Google Scholar 

  • Guo, G.: Superstructure fiber Bragg gratings for simultaneous temperature and strain measurement. Opt. Int. J. Light Electron Opt. 182, 331–340 (2019)

    Google Scholar 

  • Hafizi, Z.M., Vorathin, E., Aizzuddin, A.M., Lim, K.S.: High-resolution fibre Bragg grating (FBG) pressure transducer for low-pressure detection. Int. J. Automot. Mech. Eng. 16(2), 6783–6795 (2019)

    Google Scholar 

  • Hayber, S.E.: Selection of fiber optic Fabry–Perot interferometer parameter for acoustic sensing applications. In: International conference on advances and innovations in engineering, Turkey. 1-7 (2017)

  • He, X.L., et al.: A cascade fiber optic sensors for simultaneous measurement of strain and temperature. IEEE Sens. Lett. 2(3), 1–4 (2019)

    Google Scholar 

  • Hill, K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 15(8), 1263–1276 (1997)

    ADS  Google Scholar 

  • Hong, C., Zhang, Y., Yang, Y., Yuan, Y.: A FBG based displacement transducer for small soil deformation measurement. Sens. Actuators A Phys. 286, 35–42 (2019)

    Google Scholar 

  • Hsu, Y.S., Wang, L., Liu, W., Chiang, Y.J.: Temperature compensation of optical fiber Bragg grating pressure sensor. IEEE Photonics Technol. Lett. 18(7), 874–876 (2006)

    ADS  Google Scholar 

  • Jin, L., et al.: An embedded FBG sensor for simultaneous measurement of stress and temperature. IEEE Photonics Technol. Lett. 18(1), 154–156 (2006)

    ADS  Google Scholar 

  • Ju, S., Watekar, P.R., Han, W.: Enhanced sensitivity of the FBG temperature sensor based on the PbO-GeO2-SiO2 glass optical fiber. J. Light. Technol. 28(18), 2697–2700 (2020)

    Google Scholar 

  • Kashyap, R.: Principles of optical fiber grating sensors, Second. Academic Press, Elsevier. 441–502 (2010)

  • Kim, S., Member, S., Kwon, J., Kim, S., Lee, B.: Temperature-independent strain sensor using a chirped grating partially embedded in a glass tube. IEEE Photonics Technol. Lett. 12(6), 678–680 (2000)

    ADS  Google Scholar 

  • Kuang, Y., Guo, Y., Xiong, L., Liu, W.: Packaging and temperature compensation of fiber Bragg grating for strain sensing : a survey. Photonic Sens. 8(4), 320–331 (2018)

    ADS  Google Scholar 

  • Leal-junior, A.G., Diaz, C., Frizera, A., Ribeiro, M., Marques, C., Pontes, M.J.: Material features based compensation technique for the temperature effects in a polymer diaphragm-based FBG pressure sensor. Opt. Express 26(16), 225–232 (2018)

    Google Scholar 

  • Li, R.: Sensitivity enhancement of FBG-based strain sensor. Sensors 18(1607), 1–12 (2018)

    Google Scholar 

  • Li, T., Shi, C., Ren, H.: A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution. IEEE Photonics Technol. Lett. 29(14), 1199–1202 (2017)

    ADS  Google Scholar 

  • Liu, Q., Ran, Z.L., Rao, Y.J.: Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain. IEEE Photonics Technol. Lett. 26(17), 1715–1717 (2014)

    ADS  Google Scholar 

  • Liu, M., Wang, W., Song, H., Zhou, S., Zhou, W.: A high sensitivity FBG strain sensor based on flexible hinge. Sensors 19(1931), 1–11 (2019)

    Google Scholar 

  • Lo, Y.L.: Using in-fiber Bragg-grating sensors for measuring axial strain and temperature simultaneously on surfaces of structures. Opt. Eng. 37(8), 2272–2276 (2015)

    ADS  MathSciNet  Google Scholar 

  • Madan, A., et al.: Investigation of a Bragg grating-based Fabry–Perot structure inscribed using femtosecond laser micromachining in an adiabatic fiber taper. Appl. Sci. 10(1069), 1–14 (2020)

    ADS  Google Scholar 

  • Munendhar, P., Aneesh, R., Khijwania, S.K.: Development of an all-optical temperature insensitive nonpendulum-type tilt sensor employing fiber Bragg gratings. Appl. Opt. 53(16), 3574–3580 (2014)

    ADS  Google Scholar 

  • Othonos, A., Kalli, K., Pureur, D., Mugnier, A.: Fiber Bragg gratings. In: Wavelength filters in fibre optics, pp. 189–269. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  • Pachava, V.R., Srimannarayana, K., Madhuvarasu, S.S., Kishore, P.: Polymer packaged fiber Grating pressure sensor with enhanced sensitivity. Int. J. Optoelectron. Eng. 4(1), 1–5 (2014)

    Google Scholar 

  • Park, S.O., Jang, B.W., Lee, Y.G., Kim, C.G., Park, C.Y.: Simultaneous measurement of strain and temperature using a reverse index fiber Bragg grating sensor. Meas. Sci. Technol. 21(035703), 1–8 (2010)

    Google Scholar 

  • Peng, J., Jia, S., Jin, Y., Xu, S., Xu, Z.: Design and investigation of a sensitivity-enhanced fiber Bragg grating sensor for micro-strain measurement. Sensors Actuators A Phys. 285, 437–447 (2019)

    Google Scholar 

  • Rao, Y.: In-fibre Bragg grating sensors. Meas. Sci. Technol. 8, 355–375 (1997)

    ADS  Google Scholar 

  • Roussel, N., Magne, S., Martinez, C., Ferdinand, P.: Measurement of index modulation along fiber Bragg gratings by side scattering and local heating techniques. Opt. Fiber Technol.Fiber Technol. 5(1), 119–132 (1999)

    ADS  Google Scholar 

  • Russell, P., Reekie, L., Archambault, J.L.: High reflectivity and narrow bandwidth fiber gratings written by excimer pulse. Electron. Lett. 29(1), 28–29 (1993)

    ADS  Google Scholar 

  • Sa’ad, M.S.M., et al.: Temperature-independent vibration sensor based on Fabry–Perot interferometer using a fiber Bragg grating approach. Opt. Eng. 61(3), 1–13 (2022)

    Google Scholar 

  • Sahota, J.K., Gupta, N., Dhawan, D.: Fiber Bragg grating sensors for monitoring of physical parameters : a comprehensive review. Opt. Eng. 59(6), 1–35 (2020)

    Google Scholar 

  • Sampath, U., Kim, D., Kim, H., Song, M.: Polymer-coated FBG sensor for simultaneous temperature and strain monitoring in composite materials under cryogenic conditions. Appl. Opt. 57(3), 492–497 (2018)

    ADS  Google Scholar 

  • Satya, V., Swamy, C., Parne, S.R., Afzulpurkar, S.: Design and development of pressure sensor based on fiber Bragg grating (FBG) for ocean applications. Eur. Phys. J. Appl. Phys. 90(30501), 1–9 (2020)

    Google Scholar 

  • Sengupta, S., Ghorai, S.K., Biswas, P.: Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity. IEEE Sens. J. 16(22), 7941–7949 (2016)

    ADS  Google Scholar 

  • Shi, Q., Wang, Y., Cui, Y., Xia, W., Guo, D., Wang, M.: Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator. IEEE Sens. J. 18(23), 9562–9567 (2018)

    ADS  Google Scholar 

  • Singh, A.K., Berggren, S., Zhu, Y., Han, M., Huang, H.: Simultaneous strain and temperature measurement using a single fiber Bragg grating embedded in a composite laminate. Smart Mater. Struct. 26, 1–10 (2017)

    Google Scholar 

  • Sonja, J., Strehlow, J., Heldmann, S., Mevis, F.: Shape sensing with fiber Bragg grating sensors reconstruction. In: Handels, H., Deserno, T., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2019, pp. 1–2. (2019)

  • Srinivasan, B., Harish, A.V., Srijith, K., Balasubramaniam, K.: Elastic wave sensing using fiber Bragg grating-based sensors and dynamic interrogators. J. Indian Inst. Sci. 94(3), 329–340 (2014)

    Google Scholar 

  • Tian, K., Liu, Y., Wang, Q.: Temperature-independent fiber Bragg grating strain sensor using bimetal cantilever. Opt. Fiber Technol.Fiber Technol. 11, 370–377 (2005)

    ADS  Google Scholar 

  • Tiwari, U., Thyagarajan, K., Shenoy, M.R.: Strain and temperature discrimination technique by use of a FBG written in erbium doped fiber. Opt. Int. J. Light Electron Opt. 125(1), 235–237 (2014)

    Google Scholar 

  • Trpkovski, S., Wade, S.A., Collins, S.F., Kouroussis, G., Kinet, D., Mendoza, E.: Simultaneous load and temperature measurement using Lophine-coated fiber Bragg gratings. Smart Mater. Struct.Struct. 25(115019), 1–6 (2016)

    Google Scholar 

  • Wang, Z., Shen, F., Song, L., Wang, X., Wang, A.: Multiplexed fiber Fabry–Pérot interferometer sensors based on ultrashort Bragg gratings. IEEE Photonics Technol. Lett. 19(8), 622–624 (2007)

    ADS  Google Scholar 

  • Wang, K., Wang, B., Yan, B., Sang, X., Yuan, J., Peng, G.: Simultaneous measurement of absolute strain and differential strain based on fi ber Bragg grating Fabry – Perot sensor. Opt. Commun.Commun. 307, 101–105 (2013)

    ADS  Google Scholar 

  • Wang, H., Member, S., Zhang, R., Chen, W., Liang, X., Pfeifer, R.: Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans. Mechatron.Mechatron. 21(6), 2977–2982 (2016)

    Google Scholar 

  • Wang, J.: Research on dynamic grating cascaded fiber Bragg grating Fabry–Perot cavity. In: 2020 IEEE conference on telecommunications, optics and computer science, TOCS 2020, pp. 85–88. (2020)

  • Xiong, L., Jiang, G., Guo, Y., Kuang, Y.: Investigation of the temperature compensation of FBGs encapsulated with different methods and subjected to different temperature change rates. J. Light. Technol. 37(3), 917–926 (2019)

    ADS  Google Scholar 

  • Yulianti, I., Sahmah, A., Supa, M., Idrus, S.M., Anwar, M.R.S.: Measurement of humidity and temperature. Opt. Int. J. Light Electron Opt. 124, 3919–3923 (2013)

    Google Scholar 

  • Zhang, W.T., Li, F., Liu, Y.L., Liu, L.H.: Ultrathin FBG pressure sensor with enhanced responsitivity. IEEE Photonics Technol. Lett. 19(19), 1553–1555 (2007)

    ADS  Google Scholar 

  • Zhang, Q., Zeng, J., Zhu, L., Yang, D., Zhang, P.: Temperature sensors based on multimode chalcogenide fibre Bragg gratings. J. Mod. Opt. 65(7), 830–836 (2018a)

    ADS  MathSciNet  Google Scholar 

  • Zhang, A.L., Qiao, X., Bao, W.: Strain and temperature discrimination using a fiber Bragg grating with off-axis inscription. Opt. Int. J. Light Electron Opt. 171, 941–946 (2018b)

    Google Scholar 

  • Zhao, Y., Liu, Y., Zhou, C., Guo, Q., Wang, T.: Sensing characteristics of long-period fiber Gratings written in thinned cladding fiber. IEEE Sens. J. 16(5), 1217–1223 (2016)

    ADS  Google Scholar 

  • Zhao, X., et al.: Ultra-high sensitivity and temperature-compensated Fabry-Perot strain sensor based on tapered FBG. Opt. Laser Technol. 124, 105997, 1–6 (2020)

    Google Scholar 

  • Zhu, H., Yin, J., Zhang, L., Jin, W., Dong, J.: Monitoring internal displacements of a model dam using FBG sensing bars. Adv. Struct. Eng.Struct. Eng. 13(2), 249–261 (2010)

    ADS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Methodology, conceptualization, and investigation were performed by JKS. Formal analysis and guidance were provided by DD and NG. The first draft of the manuscript was written by JKS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jasjot Kaur Sahota.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahota, J.K., Dhawan, D. & Gupta, N. Investigating the effect of modulation depth of refractive index in cascaded FBGs for dual sensing of strain and temperature. Opt Quant Electron 56, 729 (2024). https://doi.org/10.1007/s11082-024-06446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06446-z

Keywords

Navigation