Skip to main content
Log in

Variational principle for generalized unstable and modify unstable nonlinear Schrödinger dynamical equations and their optical soliton solutions

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, we investigate two types of nonlinear Schrödinger equations (NLSE): the unstable NLSE and the modify unstable NLSE. These equations describe the time evolution of disturbances in unstable media. To solve the proposed equations, we employ the variational principle method that involves selecting trial functions based on the Jost function in different forms. Also, these ansatz functions should be continuous at all intervals and may contain single or two nontrivial variational parameters. After that, we use these trial functions to find the functional integral and Lagrangian of the system without any loss. Besides, we use the amplitude ansatz method to explore new soliton solutions. The obtained results include various solitons, such as bright soliton, dark soliton, bright–dark solitary wave solutions, rational dark-bright soliton solutions, and periodic solitary wave solutions. The results will be displayed through different types of graphs, including 2D, 3D, and contour plots, which effectively highlight their outcomes. These solutions have essential applications in the fields of applied science and engineering. Also, they are stable and analytical solutions. The offered techniques can be utilized to solve numerous nonlinear models in mathematical physics and various applied sciences fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ablowitz, M.J., Ablowitz, M.A., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  • Agrawal, G.P.: Nonlinear fiber optics. In: Nonlinear Science at the Dawn of the 21st Century, pp. 195–211. Springer, Berlin (2000)

  • Ahmad, J., Mustafa, Z.: Analysis of soliton solutions with different wave configurations to the fractional coupled nonlinear Schrödinger equations and applications. Opt. Quantum Electron. 55 (2023), article number 1228

  • Ali, A., Ahmad, J., Javed, S.: Exploring the dynamic nature of soliton solutions to the fractional coupled nonlinear Schrödinger model with their sensitivity analysis. Opt. Quantum Electron. 55 (2023), article number 810

  • Ali, A., Ahmad, J., Javed, S.: Investigating the dynamics of soliton solutions to the fractional coupled nonlinear Schrödinger model with their bifurcation and stability analysis. Opt. Quantum Electron. 55 (2023), article number 829

  • Ali, K., Seadawy, A.R., Aziz, N., Rizvi, S.T.R.: Soliton solutions to generalized (2+1)-dimensional Hietarinta-type equation and resonant NLSE along with stability analysis. Int. J. Mod. Phys. B 38(01), 2450009 (2024)

    Article  ADS  Google Scholar 

  • Aniqa, A., Ahmad, J.: Soliton solution of fractional Sharma–Tasso–Olever equation via an efficient expansion method. Ain Shams Eng. J. 13(1), 101528 (2022)

    Article  Google Scholar 

  • Arbabi, S., Najafi, M.: Exact solitary wave solutions of the complex nonlinear Schrödinger equations. Optik 127(11), 4682–4688 (2016). https://doi.org/10.1016/j.ijleo.2016.02.008

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D., Wang, J.: Travelling wave solutions of generalized coupled Zakharov–Kuznetsov and dispersive long wave equations. Results Phys. 6, 1136–1145 (2016). https://doi.org/10.1016/j.rinp.2016.11.043

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A.R., Jun, W.: Modulation instability analysis of modify unstable nonlinear schrodinger dynamical equation and its optical soliton solutions. Results Phys. 7, 4153–4161 (2017). https://doi.org/10.1016/j.rinp.2017.10.029

    Article  ADS  Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D., Wang, J.: Optical soliton solutions of unstable nonlinear Schröodinger dynamical equation and stability analysis with applications. Optik 157, 597–605 (2018). https://doi.org/10.1016/j.ijleo.2017.11.129

    Article  ADS  Google Scholar 

  • Bona, J.L., Saut, J.: Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves. Chin. Ann. Math. Ser. B 31(6), 793–818 (2010). https://doi.org/10.1007/s11401-010-0617-0

    Article  Google Scholar 

  • Bona, J.L., Ponce, G., Saut, J., Sparber, C.: Dispersive blow-up for nonlinear Schrödinger equations revisited. J. De Math. Pures et Appl. 102(4), 782–811 (2014). https://doi.org/10.1016/j.matpur.2014.02.006

    Article  MathSciNet  Google Scholar 

  • Chabchoub, A., Hoffmann, N., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106(20) (2011). https://doi.org/10.1103/physrevlett.106.204502

  • Dalfovo, F., Giorgini, S., Pitaevskiĭ, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1999). https://doi.org/10.1103/revmodphys.71.463

    Article  ADS  Google Scholar 

  • Davydov, A.S.: Solitons in Molecular Systems, p. 113. Reidel, Dordrecht (1985)

    Book  Google Scholar 

  • Fan, E., Zhang, J.: Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. 305(6), 383–392 (2002). https://doi.org/10.1016/s0375-9601(02)01516-5

    Article  MathSciNet  Google Scholar 

  • Faridi, W.A., Tipu, G.H., Myrzakulova, Z., Myrzakulov, R., Akinyemi, L.: Formation of optical soliton wave profiles of Shynaray-IIA equation via two improved techniques: a comparative study. Opt. Quantum Electron. 56 (2024), article number 132

  • Faridi, W.A., Bakar, M.A., Myrzakulova, Z., Myrzakulov, R., Akgül, A., El Din, S.M.: The formation of solitary wave solutions and their propagation for Kuralay equation. Results Phys. 52, 106774 (2023)

    Article  Google Scholar 

  • Faridi, W.A., Bakar, M.A., Akgül, A., El-Rahman, M.A., El Din, S.M.: Exact fractional soliton solutions of thin-film ferroelectric material equation by analytical approaches. Alex. Eng. J. 78, 483–497 (2023)

    Article  Google Scholar 

  • Fedele, R., Miele, G., Palumbo, L., Vaccaro, V.G.: Thermal wave model for nonlinear longitudinal dynamics in particle accelerators. Phys. Lett. 179(6), 407–413 (1993). https://doi.org/10.1016/0375-9601(93)90099-l

    Article  Google Scholar 

  • Ghanbari, B., Kuo, C.-K.: New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin–Bona–Mahony and (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(2019), article number 334

  • Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B 33(09), 1950106 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 95(7), 075201 (2020)

    Article  ADS  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. Mod. Phys. Lett. B 33(32), 1950402 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio-temporal dispersion involving M-derivative. Mod. Phys. Lett. B 33(20), 1950235 (2019)

    Article  ADS  Google Scholar 

  • Helal, M.A., Seadawy, A.R.: Variational method for the derivative nonlinear Schrödinger equation with computational applications. Phys. Scr. 80, 350–360 (2009)

    Article  Google Scholar 

  • Helal, M.A., Seadawy, A.R.: Variational method for the derivative nonlinear Schrödinger equation with computational applications. Phys. Scr. 80(3), 035004 (2009). https://doi.org/10.1088/0031-8949/80/03/035004

    Article  ADS  Google Scholar 

  • Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple interactions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  ADS  Google Scholar 

  • Hosseini, K., Kumar, D., Kaplan, M., Bejarbaneh, E.Y.: New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 68(6), 761 (2017). https://doi.org/10.1088/0253-6102/68/6/761

    Article  ADS  MathSciNet  Google Scholar 

  • Iqbal, M., Lu, D., Seadawy, A.R., Ashraf, M., Albaqawi, H.S., Khan, K.A., Chou, D.: Investigation of solitons structures for nonlinear ionic currents microtubule and Mikhaillov–Novikov–Wang dynamical equations. Opt. Quantum Electron. 56 (2024), article number 361

  • Javeed, S., Bleanu, D., Waheed, A., Khan, M.S., Affan, H.: Analysis of homotopy Perturbation Method for solving fractional order differential equations. Mathematics 7(1), 40 (2019). https://doi.org/10.3390/math7010040

    Article  Google Scholar 

  • Kaup, D.J., Malomed, B.A.: Variational principle for the Zakharov–Shabat equations. Physica D 84(3–4), 319–328 (1995). https://doi.org/10.1016/0167-2789(95)00057-b

    Article  ADS  MathSciNet  Google Scholar 

  • Khater, A.H., Callebaut, D.K., Helal, M.A., Seadawy, A.R.: Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line. Eur. Phys. J. D 39, 237–245 (2006)

    Article  ADS  Google Scholar 

  • Li, B., Chen, Y.: On exact solutions of the nonlinear Schrödinger equations in optical fiber. Chaos Solitons Fract. 21(1), 241–247 (2004). https://doi.org/10.1016/j.chaos.2003.10.029

    Article  ADS  Google Scholar 

  • Li, M., Xu, T., Wang, L.: Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 80(3), 1451–1461 (2015). https://doi.org/10.1007/s11071-015-1954-z

    Article  Google Scholar 

  • Lü, X., Zhu, H., Meng, X., Yang, Z., Tian, B.: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J. Math. Anal. Appl. 336(2), 1305–1315 (2007). https://doi.org/10.1016/j.jmaa.2007.03.017

    Article  MathSciNet  Google Scholar 

  • Lu, D., Seadawy, A.R., Arshad, M.: Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 140, 136–144 (2017). https://doi.org/10.1016/j.ijleo.2017.04.032

    Article  ADS  Google Scholar 

  • Majid, S.Z., Asjad, M.I., Faridi, W.A.: Solitary travelling wave profiles to the nonlinear generalized Calogero–Bogoyavlenskii–Schiff equation and dynamical assessment. Eur Phys. J. Plus 138 (2023), article number 1040

  • Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992). https://doi.org/10.1119/1.17120

    Article  ADS  MathSciNet  Google Scholar 

  • Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54(6), 563–568 (1996). https://doi.org/10.1088/0031-8949/54/6/003

    Article  ADS  MathSciNet  Google Scholar 

  • Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan \((\Phi (\xi )/2)\)-expansion method. Optik 127(10), 4222–4245 (2016). https://doi.org/10.1016/j.ijleo.2016.01.078

    Article  ADS  Google Scholar 

  • Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966). https://doi.org/10.1103/physrev.150.1079

    Article  ADS  Google Scholar 

  • Pawlik, M., Rowlands, G.: The propagation of solitary waves in piezoelectric semiconductors. J. Phys. C: Solid State Phys. 8(8), 1189–1204 (1975). https://doi.org/10.1088/0022-3719/8/8/022

    Article  ADS  Google Scholar 

  • Rani, A., Ashraf, M., Ahmad, J., Ul-Hassan, Q.M. Soliton solutions of the Caudrey–Dodd–Gibbon equation using three expansion methods and applications. Opt. Quantum Electron. 54 (2022), article number 158

  • Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., Younis, M., Ali, K.: Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solitons Fract. 151, 111251 (2021)

    Article  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Kamran Naqvi, S., Ismail, M.: Bifurcation analysis for mixed derivative nonlinear Schrödinger’s equation, \(\alpha \)-helix nonlinear Schrödinger’s equation and Zoomeron model. Opt. Quant. Electron. 56, 452 (2024)

    Article  ADS  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Ahmed, S.: Bell and Kink type, Weierstrass and Jacobi elliptic, multiwave, kinky breather, M-shaped and periodic-kink-cross rational solutions for Einstein’s vacuum field model. Opt. Quant. Electron. 56, 456 (2024)

    Article  ADS  Google Scholar 

  • Seadawy, A.R.: New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Comput. Math. Appl. 62, 3741–3755 (2011)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R.: Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172–180 (2014)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrodinger equation with computational applications by variational method. Eur. Phys. J. Plus 130(182), 1–10 (2015)

    Google Scholar 

  • Seadawy, A.R.: Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a magnetized electron-positron plasma. Physica A: Stat. Mech. Appl. Phys. A 455, 44–51 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Seadawy, A.R., Lu, D.: Ion acoustic solitary wave solutions of three-dimensional nonlinear extended Zakharov–Kuznetsov dynamical equation in a magnetized two-ion-temperature dusty plasma. Results Phys. 6, 590–593 (2016). https://doi.org/10.1016/j.rinp.2016.08.023

    Article  ADS  Google Scholar 

  • Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Results Phys. 7, 43–48 (2017). https://doi.org/10.1016/j.rinp.2016.11.038

    Article  ADS  Google Scholar 

  • Seadawy, A.R., Iqbal, M., Lu, D.: Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsive-Petviashvili modified equal width dynamical equation. Comput. Math. Appl. 78, 3620–3632 (2019)

    Article  MathSciNet  Google Scholar 

  • Seadawy, A.R., Iqbal, M., Lu, D.: Construction of soliton solutions of the modify unstable nonlinear Schrödinger dynamical equation in fiber optics. Indian J. Phys. 94(6), 823–832 (2019). https://doi.org/10.1007/s12648-019-01532-5

    Article  ADS  Google Scholar 

  • Seadawy, A.R., Ahmad, A., Rizvi, S.T.R., Ahmed, S.: Bifurcation solitons, Y-type, distinct lumps and generalized breather in the thermophoretic motion equation via graphene sheets. Alex. Eng. J. 87, 374–388 (2024)

    Article  Google Scholar 

  • Sindi, C.T., Manafian, J.: Soliton solutions of the quantum Zakharov–Kuznetsov equation which arises in quantum magneto-plasmas. Eur. Phys. J. Plus 132(2) (2017). https://doi.org/10.1140/epjp/i2017-11354-7

  • Tariq, K.U., Seadawy, A.R.: Bistable bright–dark solitary wave solutions of the (3 + 1)-dimensional Breaking soliton, Boussinesq equation with dual dispersion and modified Korteweg–de Vries–Kadomtsev–Petviashvili equations and their applications. Results Phys. 7, 1143–1149 (2017). https://doi.org/10.1016/j.rinp.2017.03.001

    Article  ADS  Google Scholar 

  • Tipu, G.H., Faridi, W.A., Rizk, D., Myrzakulova, Z., Myrzakulov, R., Akinyemi, L.: The optical exact soliton solutions of Shynaray-IIA equation with model expansion approach. Opt. Quantum Electron. 56 (2024), article number 226

  • Tonti, E.N.Z.O.: Variational formulation for every nonlinear problem. Int. J. Eng. Sci. 22(11–12), 1343–1371 (1984)

    Article  MathSciNet  Google Scholar 

  • Wang, K.-J.: Soliton molecules and other diverse wave solutions of the (2+1)-dimensional Boussinesq equation for the shallow water. Eur. Phys. J. Plus 138 (2023), article number 891

  • Wang, M.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. 199(3–4), 169–172 (1995). https://doi.org/10.1016/0375-9601(95)00092-h

    Article  MathSciNet  Google Scholar 

  • Wang, K.-J.: Dynamics of complexiton, Y-type soliton and interaction solutions to the \((3+1)-\)dimensional Kudryashov–Sinelshchikov equation in liquid with gas bubbles. Results Phys. 54, 107068 (2023)

    Article  Google Scholar 

  • Wang, K.-J.: On the generalized variational principle of the fractal Gardner equation. Fractals 31(09), 2350120 (2023)

    Article  ADS  Google Scholar 

  • Wang, K.-J.: Resonant multiple wave, periodic wave and interaction solutions of the new extended (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 111, 16427–16439 (2023)

    Article  Google Scholar 

  • Wang, K.-J.: Soliton molecules, interaction and other wave solutions of the new (3+1)-dimensional integrable fourth-order equation for shallow water waves. Phys. Scr. 99(1), 015223 (2024)

    Article  ADS  Google Scholar 

  • Wang, K.-J., Peng, X.: Generalized variational structure of the fractal modified KdV-Zakharov–Kuznetsov equation. Fractals 31(07), 2350084 (2023)

    Article  ADS  Google Scholar 

  • Yang, X., Deng, Z., Yi, W.: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Differ. Equ. 2015(1) (2015). https://doi.org/10.1186/s13662-015-0452-4

  • Younas, U., Younis, M., Seadawy, R., Rizvi, S.T.E.: Optical solitons and closed form solutions to (3+1)-dimensional resonant Schrodinger equation. Int. J. Mod. Phys. B 34(30), 2050291 (2020)

    Article  ADS  Google Scholar 

  • Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35(5), 908–914 (1972)

    ADS  Google Scholar 

  • Zhang, L., Ying, L., Liu, Y.: New solitary wave solutions for two nonlinear evolution equations. Comput. Math. Appl. 67(8), 1595–1606 (2014). https://doi.org/10.1016/j.camwa.2014.02.017

    Article  MathSciNet  Google Scholar 

  • Zhao, Q., Wu, L.: Darboux transformation and explicit solutions to the generalized TD equation. Appl. Math. Lett. 67, 1–6 (2017). https://doi.org/10.1016/j.aml.2016.11.012

    Article  MathSciNet  Google Scholar 

  • Zhao, H., Han, J., Wang, W., An, H.: Applications of extended hyperbolic Function method for quintic discrete nonlinear Schrödinger equation. Commun. Theor. Phys. 47(3), 474–478 (2007). https://doi.org/10.1088/0253-6102/47/3/020

    Article  ADS  Google Scholar 

  • Zhou, Z., Yan, Z.: Solving forward and inverse problems of the logarithmic nonlinear Schrödinger equation with PT-symmetric harmonic potential via deep learning. Phys. Lett. 387, 127010 (2021). https://doi.org/10.1016/j.physleta.2020.127010

    Article  Google Scholar 

  • Zulfiqar, A., Ahmad, J.: Soliton solutions of fractional modified unstable Schrödinger equation using Exp-function method. Results Phys. 19, 103476 (2020). https://doi.org/10.1016/j.rinp.2020.103476

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aly R. Seadawy or Bayan A. Alsaedi.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Ethical approval

I hereby declare that this manuscript is the result of my independent creation under the reviewers’ comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published or written by other individuals or groups.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seadawy, A.R., Alsaedi, B.A. Variational principle for generalized unstable and modify unstable nonlinear Schrödinger dynamical equations and their optical soliton solutions. Opt Quant Electron 56, 844 (2024). https://doi.org/10.1007/s11082-024-06417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06417-4

Keywords

Navigation