Skip to main content
Log in

Soliton solutions of the time-fractional Sharma–Tasso–Olver equations arise in nonlinear optics

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article focuses on the investigation of the time-fractional Sharma–Tasso–Olver equation, a crucial equation with significant relevance in various scientific domains, including nonlinear optics, quantum field theory, and the physical sciences. The natural transform decomposition approach, an efficient and innovative methodology, is used in this study. The two nonsingular kernel derivatives, such as Caputo–Fabrizio and Atangana–Baleanu in the Caputo sense, are used in the suggested technique. We considered two nonlinear cases with suitable initial conditions to show that the proposed method is accurate and works well with the existing methods. Banach’s fixed point theorem is used to demonstrate the uniqueness and convergence of the solution that has been achieved. The proposed solution accurately captures the behaviour of the reported findings for various fractional orders. The obtained outcomes of the suggested approach are contrasted with those of the precise solution and other numerical techniques, including the natural transform decomposition method with Caputo derivative, the natural transform iterative method, the q-homotopy analysis Elzaki transform method, and the fractional reduced differential transform method. The outcomes of the proposed method are presented in tables and figures. The findings of this study demonstrate that the investigated technique is highly effective and precise in solving nonlinear time fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adivi Sri Venkata, R.K., Kirubanandam, A., Kondooru, R.: Numerical solutions of time fractional Sawada Kotera Ito equation via natural transform decomposition method with singular and nonsingular kernel derivatives. Math. Methods Appl. Sci. 44(18), 14025–14040 (2021)

    ADS  MathSciNet  Google Scholar 

  • Ahmad, S., Pak, S., Rahman, M.U., Al-Bossly, A.: On the analysis of a fractional tuberculosis model with the effect of an imperfect vaccine and exogenous factors under the Mittag–Leffler kernel. Fractal Fract. 7(7), 526 (2023)

    Google Scholar 

  • Akinyemi, L., Şenol, M., Tasbozan, O., Kurt, A.: Multiple-solitons for generalized (2 + 1)-dimensional conformable Korteweg-de Vries–Kadomtsev–Petviashvili equation. J. Ocean Eng. Sci. 7(6), 536–542 (2022)

    Google Scholar 

  • Aljoudi, S.: Exact solutions of the fractional Sharma–Tasso–Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations. Appl. Math. Comput. 405, 126237 (2021)

    MathSciNet  Google Scholar 

  • Arafa, A.A., Hagag, A.M.S.: A new analytic solution of fractional coupled Ramani equation. Chin. J. Phys. 60, 388–406 (2019)

    MathSciNet  Google Scholar 

  • Arafa, A.A.M., El-Sayed, A.M.A., Hagag, A.M.S.: A fractional Temimi–Ansari method (FTAM) with convergence analysis for solving physical equations. Math. Methods Appl. Sci. 44(8), 6612–6629 (2021)

    ADS  MathSciNet  Google Scholar 

  • Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    ADS  MathSciNet  Google Scholar 

  • Çenesiz, Y., Kurt, A., Tasbozan, O.: On the new solutions of the conformable time fractional generalized Hirota–Satsuma coupled KdV system. Ann. West Univ. Timis. Math. Comput. Sci. 55(1), 37–50 (2017)

    MathSciNet  Google Scholar 

  • Du, S., Haq, N.U., Rahman, M.U.: Novel multiple solitons, their bifurcations and high order breathers for the novel extended Vakhnenko–Parkes equation. Results Phys. 54, 107038 (2023)

    Google Scholar 

  • El-Sayed, A.M.A., Rida, S.Z., Arafa, A.A.M.: On the solutions of the generalized reaction–diffusion model for bacterial colony. Acta Appl. Math. 110, 1501–1511 (2010)

    MathSciNet  Google Scholar 

  • Fatima, B., Rahman, M.U., Althobaiti, S., Althobaiti, A., Arfan, M.: Analysis of age wise fractional order problems for the Covid-19 under non-singular kernel of Mittag–Leffler law. Comput. Methods Biomech. Biomed. Eng. (2023). https://doi.org/10.1080/10255842.2023.2239976

    Article  Google Scholar 

  • Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B. 33(09), 1950106 (2019)

    ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 95(7), 075201 (2020)

    ADS  Google Scholar 

  • Ghanbari, B., Baleanu, D.: New solutions of Gardner’s equation using two analytical methods. Front. Phys. 7, 202 (2019)

    Google Scholar 

  • Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)

    Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio–temporal dispersion involving M-derivative. Mod. Phys. Lett. B. 33(20), 1950235 (2019)

    ADS  Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. Mod. Phys. Lett. B. 33(32), 1950402 (2019)

    ADS  MathSciNet  Google Scholar 

  • Ghanbari, B., Kuo, C.K.: New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin–Bona–Mahony and (2 + 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334 (2019)

    Google Scholar 

  • Ghanbari, B., Baleanu, D., Al Qurashi, M.: New exact solutions of the generalized Benjamin–Bona–Mahony equation. Symmetry 11(1), 20 (2018)

    ADS  Google Scholar 

  • Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345(1), 476–484 (2008)

    MathSciNet  Google Scholar 

  • Inc, M., Korpinar, Z.S., Al Qurashi, M.M., Baleanu, D.: A new method for approximate solutions of some nonlinear equations: residual power series method. Adv. Mech. Eng. 8(4) (2016). https://doi.org/10.1177/1687814016644580

  • Jafari, H., Nazari, M., Baleanu, D., Khalique, C.M.: A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 66(5), 838–843 (2013)

    MathSciNet  Google Scholar 

  • Kanth, A.R., Aruna, K., Raghavendar, K., Rezazadeh, H., Inc, M.: Numerical solutions of nonlinear time fractional Klein–Gordon equation via natural transform decomposition method and iterative Shehu transform method. J. Ocean Eng. Sci. (2021). https://doi.org/10.1016/j.joes.2021.12.002

    Article  Google Scholar 

  • Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Eur. Phys. J. Plus 136(4), 447 (2021)

    Google Scholar 

  • Koppala, P., Kondooru, R.: An efficient technique to solve time-fractional Kawahara and modified Kawahara equations. Symmetry 14(9), 1777 (2022)

    ADS  Google Scholar 

  • Li, B., Eskandari, Z.: Dynamical analysis of a discrete-time SIR epidemic model. J. Frankl. Inst. 360(12), 7989–8007 (2023)

    MathSciNet  Google Scholar 

  • Li, B., Zhang, T., Zhang, C.: Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative. Fractals 31(05), 2350050 (2023)

    ADS  Google Scholar 

  • Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  • Malagi, N.S., et al.: Novel approach for nonlinear time-fractional Sharma–Tasso–Olever equation using Elzaki transform. Int. J. Optim. Control Theor. Appl. IJOCTA 13(1), 46–58 (2023)

    MathSciNet  Google Scholar 

  • Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, Hoboken (1993)

    Google Scholar 

  • Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. B 335(6), 1077–1086 (1998)

    MathSciNet  Google Scholar 

  • Nawaz, R., Ali, N., Zada, L., Nisar, K.S., Alharthi, M.R., Jamshed, W.: Extension of natural transform method with Daftardar–Jafari polynomials for fractional order differential equations. Alex. Eng. J. 60(3), 3205–3217 (2021)

    Google Scholar 

  • Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier, Amsterdam (1974)

    Google Scholar 

  • Ovsiannikov, L.V.E.: Group Analysis of Differential Equations, vol. 1, p. 82. Academic Press, New York (1982)

    Google Scholar 

  • Pan, J., Rahman, M.U.: Breather-like, singular, periodic, interaction of singular and periodic solitons, and a-periodic solitons of third-order nonlinear Schrödinger equation with an efficient algorithm. Eur. Phys. J. Plus 138, 912 (2023)

    Google Scholar 

  • Pavani, K., Raghavendar, K.: Approximate solutions of time-fractional Swift–Hohenberg equation via natural transform decomposition method. Int. J. Appl. Comput. 9(3), 29 (2023)

    MathSciNet  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  • Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  Google Scholar 

  • Prakasha, D.G., Veeresha, P., Rawashdeh, M.S.: Numerical solution for (2 + 1)-dimensional time fractional coupled Burger equations using fractional natural decomposition method. Math. Methods Appl. Sci. 42(10), 3409–3427 (2019)

    ADS  MathSciNet  Google Scholar 

  • Ravi Kanth, A.S.V., Aruna, K., Raghavendar, K.: Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation. Numer. Methods Partial Differ. Equ. 39(3), 2690–2718 (2023)

    MathSciNet  Google Scholar 

  • Rawashdeh, M.S.: An efficient approach for time-fractional damped Burger and time-Sharma–Tasso–Olver equations using the FRDTM. Appl. Math. Inf. Sci. 9(3), 1239–1246 (2015)

    MathSciNet  Google Scholar 

  • Rawashdeh, M., Maitama, S.: Finding exact solutions of nonlinear PDEs using the natural decomposition method. Math. Methods Appl. Sci. 40(1), 223–236 (2017)

    ADS  MathSciNet  Google Scholar 

  • Rezazadeh, H., Khodadad, F.S., Manafian, J.: New structure for exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation via conformable fractional derivative. Int. J. Appl. Math. Appl. 12(1), 26 (2017)

    MathSciNet  Google Scholar 

  • Rida, S., Arafa, A., Abedl-Rady, A., Abdl-Rahaim, H.: Fractional physical differential equations via natural transform. Chin. J. Phys. 55(4), 1569–1575 (2017)

    Google Scholar 

  • Roy, R., Akbar, M.A., Wazwaz, A.M.: Exact wave solutions for the nonlinear time fractional Sharma–Tasso–Olver equation and the fractional Klein–Gordon equation in mathematical physics. Opt. Quantum Electron. 50, 25 (2018)

    Google Scholar 

  • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, vol. 1. Gordon and Breach Science Publishers, Yverdon-les-Bains (1993)

    Google Scholar 

  • Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 19(5), 1200–1221 (2016)

    MathSciNet  Google Scholar 

  • Tasbozan, O., Cenesiz, Y., Kurt, A., Iyiola, O.S.: New analytical solutions and approximate solution of the space-time conformable Sharma–Tasso–Olver equation. Prog. Fract. Differ. 4(4), 519–531 (2018)

    Google Scholar 

  • Tozar, A., Tasbozan, O., Kurt, A.: Optical soliton solutions for the (1 + 1)-dimensional resonant nonlinear Schröndinger’s equation arising in optical fibers. Opt. Quantum Electron. 53(6), 316 (2021)

    Google Scholar 

  • Uddin, M.H., Khan, M.A., Akbar, M.A., Haque, M.A.: Multi-solitary wave solutions to the general time fractional Sharma–Tasso–Olver equation and the time fractional Cahn–Allen equation. Arab. J. Basic Appl. Sci. 26(1), 193–201 (2019)

    Google Scholar 

  • Varol, D.: Solitary and periodic wave solutions of the space-time fractional Extended Kawahara equation. Fractal Fract. 7(7), 539 (2023)

    Google Scholar 

  • Verheest, F., Hereman, W.: Nonlinear mode decoupling for classes of evolution equations. J. Phys. A Math. 15(1), 95 (1982). https://doi.org/10.1088/0305-4470/15/1/018

  • Wang, Q.: Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Solitons Fractals 35(5), 843–850 (2008)

    ADS  MathSciNet  Google Scholar 

  • Wang, G.W., Xu, T.Z.: Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dyn. 76, 571–580 (2014)

    MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Integrable couplings of the Burgers equation and the Sharma–Tasso–Olver equation: multiple kink solutions. Rom. Rep. Phys. 65(2), 383–390 (2013)

    Google Scholar 

  • Yalçınkaya, İ, Ahmad, H., Tasbozan, O., Kurt, A.: Soliton solutions for time fractional ocean engineering models with Beta derivative. J. Ocean Eng. Sci. 7(5), 444–448 (2022)

    Google Scholar 

  • Zhou, M.X., Kanth, A.S.V., Aruna, K., Raghavendar, K., Rezazadeh, H., Inc, M., Aly, A.A.: Numerical solutions of time fractional Zakharov–Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives. J. Funct. Sp. 2021(4), 1–17 (2021). https://doi.org/10.1155/2021/9884027

Download references

Acknowledgements

The authors express their gratitude to the anonymous reviewers for their insightful comments, which greatly enhanced the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

KP: Visualization, Methodology, Validation, Writing original draft. KR: Methodology, Investigation, Supervision, Visualization. KA: Writing original draft, Validation, Methodology, Investigation.

Corresponding author

Correspondence to K. Raghavendar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights

We would like to mention that this article does not contain any studies with animals and does not involve any studies on human beings.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavani, K., Raghavendar, K. & Aruna, K. Soliton solutions of the time-fractional Sharma–Tasso–Olver equations arise in nonlinear optics. Opt Quant Electron 56, 748 (2024). https://doi.org/10.1007/s11082-024-06384-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06384-w

Keywords

Navigation