Skip to main content
Log in

Variable repetition rate pulse power supply based on magnetic pulse compression for copper vapor lasers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The Magnetic Pulse Compression (MPC) system is a well-established method for generating high-peak-power, short-duration voltage pulses, commonly used in pulse power supplies (PPS). Traditionally designed for a fixed high repetition rate, this paper explores the techniques and outcomes of variable repetition rate operation in an MPC-based PPS used to excite a copper vapor laser (CVL). Specifically, the PPS, initially designed for 9 kHz operation, is tested at three different rates: 8 kHz, 9 kHz, and 10 kHz. A mathematical model is developed, and experimental modifications are presented in this paper. The study investigates the impact of repetition rate variations on CVL parameters, particularly phantom current (Phantom current: 47% at 8 kHz, 54% at 9 kHz, and 51% at 10 kHz). Phantom current reduces at 10 kHz due to improved impedance matching. At 8 kHz, the laser output is 24W, increases to 30W at 9 kHz and 43W at 10 kHz with a plane-plane resonator configuration. This trend extends to the master oscillator power amplifier (MOPA) at 10 kHz, resulting in a 50% increase in optical power output compared to 9 kHz. This improvement at 10 kHz applies to various parameters, including optical pulse characteristics, average power, electro-optic efficiency, energy per pulse, reduced jitter, and impedance matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All relevant data is available in the manuscript.

References

  • Baalbaki, H., Yudin, N.A.: Effect of electrode locations on the matching of the pumping generator with the load in metal vapor laser. Opt. Quant. Electron. 55(8), 706 (2023)

    Article  Google Scholar 

  • Baalbaki, H.A., Yudin, N.A., Yudin, N.N.: Prospects for improving the energy characteristics of a copper vapor laser. Atmosp. Oceanic Optics 36(1), 86–91 (2023)

    Article  ADS  Google Scholar 

  • Barrett D, (1995) "Core reset considerations in magnetic pulse compression networks", Digest of Technical Papers Tenth IEEE International Pulsed Power Conference, IEEE, 2, 1160-1165

  • Blau, P.: Spatial and temporal evolution of the electric field in a longitudinally electric-discharge-pumped gas laser: Application to a large-bore copper vapor laser. J. Appl. Phys. 77(6), 2273–2278 (1995)

    Article  ADS  Google Scholar 

  • Bokhan, P.A., Silant’ev, V., Solomonov, V.I.: Mechanism for limiting the repetition frequency of pulses from a copper vapor laser. Sov. J. Quantum Electron. 10(6), 724 (1980)

    Article  ADS  Google Scholar 

  • Bokhan, P.A., Buchanov, V.V., Fateev, N.V., Kalugin, M.M., Kazaryan, M.A., Prokhorov, A.M., et al.: Laser isotope separation in atomic vapor. John Wiley & Sons (2006)

    Book  Google Scholar 

  • Carman, R.J., Brown, D.J.W., Piper, J.A.: A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser. IEEE J. Quantum Electron. 30(8), 1876–1895 (1994)

    Article  ADS  Google Scholar 

  • Choi, J.: Introduction of the magnetic pulse compressor (MPC)- fundamental review and practical application. J. Electr. Eng. Technol. 5(3), 484–492 (2010)

    Article  Google Scholar 

  • Durga, P.K.D., Mitra, S., Senthil, K., Sharma, D.K., Rajan, R.N., Sharma, A., et al.: A design approach for systems based on magnetic pulse compression. Rev. Sci. Instrum. 79(4), 045104 (2008)

    Article  ADS  Google Scholar 

  • Gabay, S., Smilanski, I.: Effect of preionization of a copper vapor laser. IEEE J. Quantum Electron. 16(6), 598–601 (1980)

    Article  ADS  Google Scholar 

  • Gubarev, F.A., Mostovshchikov, A.V., Li, L.: High-speed optical imaging technique for combusting metal nanopowders. Opt. Laser Technol. 159, 108981 (2023b)

    Article  Google Scholar 

  • Hogan, G., Webb, C.: Radially and time-resolved measurements of electron density in an operating copper vapour laser. Measur. Sci. Technol. 8(10), 1095 (1997)

    Article  ADS  Google Scholar 

  • Jiang, W., Yatsui, K., Takayama, K., Akemoto, M., Nakamura, E., Shimizu, N., et al.: Compact solid-state switched pulsed power and its applications. Proc. IEEE 92(7), 1180–1196 (2004)

    Article  Google Scholar 

  • Jones, D.R., Halliwell, S.N., Little, C.E.: Influence of remanent electron density on the performance of copper hybrid lasers. Opt. Commun. 111(3–4), 394 (1994)

    Article  ADS  Google Scholar 

  • Kostadinov, I.K., Temelkov, K.A., Astadjov, D.N., Slaveeva, S.I., Yankov, G.P.: High-power CuBr laser systems excited by bipolar electric power supply. Opt. Quant. Electron. 55(14), 1291 (2023)

    Article  Google Scholar 

  • Kulagin, A., Trigub, M.: Kinetics of the CuBr vapor active medium under non-typical excitation conditions. Appl. Phys. B 129(5), 67 (2023)

    Article  ADS  Google Scholar 

  • Lewis, R.R.: The operating regime of longitudinal discharge copper vapour lasers. Opt. Quantum Electr. 23(4), S493–S512 (1991)

    Article  Google Scholar 

  • Little, C.E.: Metal Vapor Laser. John Wiley and Sons, Scotland (1999)

    Google Scholar 

  • Little, C.E., Sabotinov, N.V.: Pulsed metal vapour lasers. Springer Science & Business Media, Cham (1996)

    Book  Google Scholar 

  • Mishra, R., Raju, D., Nakhe, S.: Note: A novel and robust circuit for jitter reduction in copper vapor laser system. Rev. Sci. Instrum. 86(11), 116107 (2015)

    Article  ADS  Google Scholar 

  • Mittal J K, Dixit S K, (1993) "Copper Vapour Laser developed at CAT", RRCAT Newsl, (1).

  • Redjemia, R., Bouzina, A., Bouone, Y.O., Mansouri, A., Bahadi, R., Berredjem, M.: Copper (I) bromide (CuBr): a highly efficient catalyst for the synthesis of β-enaminone derivatives using ultrasound irradiation under solvent-free conditions. Res. Chem. Intermed. 48(12), 4947–4962 (2022)

    Article  Google Scholar 

  • Singh, D.K., Dikshit, B., Kawade, N.O., Mukherjee, J., Rawat, V.S.: Exploration of jitter in solid state switch based pulse power supply of copper vapor laser. J. Russian Laser Res. 41, 628 (2020a)

    Article  Google Scholar 

  • Singh, D.K., Dikshit, B., Vijayan, R., Nayak, A., Mishra, S.K., Mukherjee, J., et al.: Dependence of phantom current in a metal vapor laser on electrode geometry. Laser Phys. 30, 115001 (2020b)

    Article  ADS  Google Scholar 

  • Singh, D.K., Dikshit, B., Mukherjee, J., Rawat, V.S.: Dynamics of magnetic pulse compression circuit of metal vapor laser. J. Phys. 1921, 012117 (2021)

    Google Scholar 

  • Singh, D.K., Dikshit, B., Mukherjee, J., Rawat, V.S.: "Improvement in metal vapor laser performance with reduction in localized electric field at electrodes. Rev. Sci. Instrum.instrum. 93(1), 013004 (2022a)

    Article  ADS  Google Scholar 

  • Singh, D.K., Dikshit, B., Vijayan, R., Mukherjee, J., Rawat, V.S.: Analysis of the discharge plasma impedance of copper vapor laser. Laser Phys. 32(5), 055002 (2022b)

    Article  ADS  Google Scholar 

  • Singh, D.K., Dikshit, B., Vijayan, R., Gupta, A., Mukherjee, J., Rawat, V.S.: Impedance stabilization by trigger modulation in copper vapor laser. Opt. Quant. Electron. 55(1), 81 (2023a)

    Article  Google Scholar 

  • Singh, D.K., Dikshit, B., Vijayan, R., Mukherjee, J., Rawat, V.S.: Evaluation of conducted electromagnetic interference behavior of copper vapor laser. IEEE Trans. Electromagn. Compat. 65(1), 58–68 (2023b)

    Article  Google Scholar 

  • Trigub, M.V., Vasnev, N.A.: Laser active optical systems based on copper bromide active medium for high contrast and power images active formation. Opt. Laser Technol. 161, 109147 (2023a)

    Article  Google Scholar 

  • Trigub, M.V., Gembukh, P.I., Semenov, K.Y.: CoolMOS based high-voltage power supply with PRF up to 200 kHz for metal vapor active media excitation. Opt. Quant. Electron. 55(12), 1103 (2023)

    Article  Google Scholar 

  • Vuchkov, N.K., Astadjov, D.N., Sabotinov, N.V.: Influence of the excitation circuits on the CuBr laser performance. IEEE J. Quantum Electron. 30(3), 750–758 (1994)

    Article  ADS  Google Scholar 

  • Withford, M.J., Brown, D.J.W., Mildren, R.P., Carman, R.J., Marshall, G.D., Piper, J.A.: Advances in copper laser technology: kinetic enhancement. Prog. Quantum Electron. 28(3–4), 165–196 (2004)

    Article  ADS  Google Scholar 

  • Yudin, N.A., Baalbaki, H., Nocheva, C., Smirnova, M., Yudin, N.N.: Discharge formation in a copper vapor laser: optimal pumping conditions. Laser Phys. 31(12), 125001 (2021)

    Article  ADS  Google Scholar 

  • Zhukov, V.V., Latush, E.L., Mikhalevskiĭ, V.S., Sem, M.F.: Recombination lasers utilizing vapors of chemical elements. I. Principles of achieving stimulated emission under recombination conditions. Sov. J. Quantum Electron. 7(6), 704 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to convey their sincere appreciation to Shri B Gangawane and Shri S Mandal for their technical support in pulse power supply modification. The authors would like to thank Shri S K Mishra for his support in the preparation of the CVL Laser head. Additionally, the authors extend their thanks to colleagues in the laser development section of the Advanced Tunable Laser Application Division for their collaborative efforts and insightful discussions, which significantly enriched this study.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Dheeraj K Singh:—Conceptualization of idea, software, experiments and manuscript drafting A Gupta:—High repetition rate trigger development and experiments R Vijayan:—Resources and experiments A Nayak:—Experimental support V S Rawat:—Conceptualization of idea, manuscript review and supervision S Kundu:—Methodology and supervision Archana Sharma:—Idea and supervision.

Corresponding author

Correspondence to Dheeraj K. Singh.

Ethics declarations

Conflict of interest

No competing interest at the time of submission.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.K., Gupta, A., Vijayan, R. et al. Variable repetition rate pulse power supply based on magnetic pulse compression for copper vapor lasers. Opt Quant Electron 56, 713 (2024). https://doi.org/10.1007/s11082-024-06380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06380-0

Keywords

Navigation