Skip to main content
Log in

Construction of shock, periodic and solitary wave solutions for fractional-time Gardner equation by Jacobi elliptic function method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The investigation revolved around the study of the time fractional Gardner equation, which was examined in terms of the conformable derivative. The reduction of the Gardner equation to an integer order nonlinear ordinary differential equation was carried out, and subsequently, the resulting equations were solved using the Jacobi elliptic function method. The construction of exact solutions, including solitary wave, periodic, and shock wave solutions, for the fractional order of the Gardner equation was performed. A comparison between the exact solutions and the fractional solutions was presented. This work is important because the suggested technique offers a simple and efficient way to examine a wide range of nonlinear fractional differential equations. By employing this approach, it becomes possible to solve several nonlinear time-fractional differential equations that involve conformable derivatives. The graphical representation of the resulting data simplifies the process of determining the physical significance of the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

All data generated or analyzed during this study are included in this article.

References

  • Abdel Rady, A.S., Khater, A.H., Osman, E.S., Khalfallah, M.: New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations. Appl. Math. Comput. 207, 406414 (2009a)

  • Abdel Rady, A.S., Osman, E.S., Khalfallah, M.: Multi soliton solution for the system of Coupled Korteweg-de Vries equations. Appl. Math. Comput. 210, 177–181 (2009b)

  • Abdel Rady, A.S., Osman, E.S., Khalfallah, M.: On soliton solutions for a generalized Hirota–Satsuma coupled KdV equation. Commun. Nonlinear Sci. Numer. Simul. 15, 264–274 (2010a)

  • Abdel Rady, A.S., Osman, E.S., Khalfallah, M.: On soliton solutions for Boussinesq–Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 15, 886–894 (2010b)

  • Abdel Rady, A.S., Osman, E.S., Khalfallah, M.: Multi soliton solution, rational solution of the Boussinesq–Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 15, 1765–1767 (2010c)

  • Ali, A.T.: New generalized Jacobi elliptic function rational expansion method. J. Comput. Appl. Math. 235, 4117–4127 (2011)

    Article  MathSciNet  Google Scholar 

  • Arqub, O.A.: Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Meth. Heat Fluid Flow 28, 828–856 (2018)

    Article  Google Scholar 

  • Arqub, O.A., Al-Smadi, M.: An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator. Phys. A 540, 123257 (2020). https://doi.org/10.1016/j.physa:123257

    Article  MathSciNet  Google Scholar 

  • Bekir, A., Cevikel, A.C., Guner, O., San, S.: Bright and dark soliton solutions of the (2 + 1)-dimensional evolution equations. Math. Model. Anal. 19, 118–126 (2014)

    Article  MathSciNet  Google Scholar 

  • Cevikel, A.C.: Traveling wave solutions of conformable Duffing model in shallow water waves. Int. J. Mod. Phys. B 36, 2250164 (2022)

    Article  ADS  Google Scholar 

  • Cevikel, A.C.: Optical solutions for the (3+1)-dimensional YTSF equation. Opt. Quantum Electron. 55, 510 (2023)

    Article  Google Scholar 

  • Cevikel, A.C., Aksoy, E.: Soliton solutions of nonlinear fractional differential equations with their applications in mathematical physics. Revista Mexicana de Fsica 67, 422–428 (2021)

    MathSciNet  Google Scholar 

  • Cevikel, A.C., Bekir, A.: Assorted hyperbolic and trigonometric function solutions of fractional equations with conformable derivative in shallow water. Int. J. Mod. Phys. B 37, 2350084 (2022)

    Article  ADS  Google Scholar 

  • Cevikel, A.C., Bekir, A., Guner, O.: Exploration of new solitons solutions for the Fitzhugh–Nagumo-type equations with conformable derivatives. Int. J. Mod. Phys. B 37, 2350224 (2023)

    Article  ADS  Google Scholar 

  • Demirbilek, U., Mamedov, K.R.: Application of IBSEF method to Chaffee–Infante equation in (1+ 1) and (2+ 1) dimensions. Comput. Math. Math. Phys. 63, 1444–1451 (2023)

    Article  MathSciNet  Google Scholar 

  • Djennadi, S., Shawagfeh, N., Abu Arqub, O.: A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos Solitons Fractals 150, 111–127 (2021)

    Article  MathSciNet  Google Scholar 

  • Fan, E.: Extened tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Fu, Z., Liu, S., Liu, S., Zhao, Q.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 290, 72–76 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Fu, Z.T., Liu, S.K., Liu, S.D.: New transformations and new approach to find exact solutions to nonlinear equations. Phys. Lett. A 299, 507–512 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Hirota, R.: Exact envolpe soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805809 (1973)

    Google Scholar 

  • Iyiola, O.S., Olayinka, O.G.: Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations. Ain Shams Eng. J. 5, 999–1004 (2014)

    Article  Google Scholar 

  • Jannat, N., Raza, N., Kaplan, M., Akbulut, A.: Dynamics of lump, breather, two-waves and other interaction solutions of (2+ 1)-dimensional KdV equation. J. Appl. Comput. Math. 9, 125 (2023)

    MathSciNet  Google Scholar 

  • Kaplan, M., Bekir, A.: The modified simple equation method for solving some fractional-order nonlinear equations. Pramana 87, 1–5 (2016)

    Article  Google Scholar 

  • Kaplan, M., Bekir, A., Ozer, M.N.: A simple technique for constructing exact solutions to nonlinear differential equations with conformable fractional derivative. Opt. Quantum Electron. 49, 266 (2017)

    Article  Google Scholar 

  • Kaplan, M., Alqahtani, R., Alharthi, N.H.: Wave propagation and stability analysis for Ostrovsky and symmetric regularized long-wave equations. Mathematics 11, 4030 (2023)

    Article  Google Scholar 

  • Karaman, B.: New wave form solutions of time-fractional Gardner equation via fractional Riccati expansion method. TWMS J. Appl. and Eng. Math. 12, 1329–1335 (2022)

    Google Scholar 

  • Khalfallah, M.: New exact traveling wave solutions of the (3+1) dimensional Kadomtsev–Petviashvili (KP) equation. Commun. Nonlinear Sci. Numer. Simul. 14, 1169–1175 (2009a)

  • Khalfallah, M.: Exact traveling wave solutions of the Boussinesq–Burgers equation. Math. Comput. Model. 49, 666–671 (2009b)

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  • Kudryashov, N.A.: Exact solutions of the generalized Kuramoto–Sivashinsky equation. Phys. Lett. A 147, 287–291 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  • Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Otwinowski, M., Paul, R., Laidlaw, W.G.: Exact traveling wave solutions of a class of nonlinear diffusion equations by reduction to a quadrature. Phys. Lett. A 128, 483–7 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  • Pandir, Y., Duzgun, H.H.: New exact solutions of time fractional Gardner equation by using new version of F-expansion method. Commun. Theor. Phys. 67, 9–14 (2017)

    Article  ADS  Google Scholar 

  • Parkes, E.J., Duffy, B.R.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98, 288–300 (1996)

    Article  ADS  CAS  Google Scholar 

  • Parkes, E.J., Duffy, B.R.: Traveling solitary wave solution to a compound KdV-Burgers equation. Phys. Lett. A 229, 217–20 (1997)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Parkes, E.J., Zhu, Z., Duffy, B.R., Huang, H.C.: Sech-polynomial travelling solitary-wave solutions of odd-order generalized KdV equations. Phys. Lett. A 248, 219–224 (1998)

    Article  ADS  CAS  Google Scholar 

  • Peng, Y.Z.: Exact solutions for some nonlinear partial differential equations. Phys. Lett. A 314, 401–408 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Rasool, T., Hussain, R., Rezazadeh, H., Ali, A., Demirbilek, U.: Novel soliton structures of truncated M-fractional (4+ 1)-dim Fokas wave model. Nonlinear Eng. 12, 20220292 (2023)

    Article  ADS  Google Scholar 

  • Raza, N., Rafiq, M.H., Kaplan, M., Kumar, S., Chu, Y.-M.: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations. Results Phys. 22, 103979 (2021a)

  • Raza, N., Seadawy, A.R., Kaplan, M., Butt, A.R., Kumar, S., Chu, Y.-M.: Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications. Phys. Scripta 96, 105216 (2021b)

  • Raza, N., Rafiq, M.H., Kaplan, M., Kumar, S., Chu, Y.-M.: Exponential rational function method for solving nonlinear equations arising in various physical models. Chin. J. Phys. 54, 365–370 (2016)

    Article  MathSciNet  Google Scholar 

  • Wang, M.: Solitary wave solution for variant Boussinesq equations. Phys. Lett. A 199, 169–72 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Wang, G., Wazwaz, A.-M.: On the modified Gardner type equation and its time fractional form. Chaos Solitons Fractals 155, 111694 (2022)

    Article  MathSciNet  Google Scholar 

  • Wang, M., Zhou, Y., Li, Z.: Application of homogeneous balance method to exact solutions of nonlinear equation in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    Article  ADS  CAS  Google Scholar 

  • Wang, K.J., Shi, F., Liu, J.-H., Si, J.: Application of the extended F-expansion method for solving the fractional Gardner equation with conformable fractional derivative. Fractals 30, 2250139 (2022)

    Article  ADS  Google Scholar 

  • Yan, C.T.: A simple transformation for nonlinear waves. Phys. Lett. A 224, 77–84 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Funding

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R1445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Elsadany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsadany, A.A., Elboree, M.K. Construction of shock, periodic and solitary wave solutions for fractional-time Gardner equation by Jacobi elliptic function method. Opt Quant Electron 56, 481 (2024). https://doi.org/10.1007/s11082-023-06102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06102-y

Keywords

Navigation