Skip to main content
Log in

A novel model for hyper spectral image enhancement and classification: PCA, MBAO and CNN integration

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Hyperspectral images (HSI) are contiguous band images commonly used in remote sensing applications. Over the past decades, significant advancements have been made in HSI enhancement and classification. However, challenges such as computational complexity, low spatial resolution, overfitting, noisy images, misclassification, and slow convergence speed persist. So the novel HSI enhancement and classification model is proposed to address and overcome these issues. The data are collected from the different HSI datasets namely Pavia University (PU), Indian Pines (IP), Salinas Valley (SV), Houston University (HU) and Kennedy Space Center (KSC) for preprocessing the collected data. The collected data undergoes preprocessing, which includes noise reduction, geometric correction, and radiometric calibration operations to improve image quality. To reduce the high dimensionality of the preprocessed image, Principal Component Analysis (PCA) is employed. Additionally, the Mutation Boosted Aquila Optimization (MBAO) algorithm is applied to enhance the visual quality of the image. The image enhancement process relies on three types of enhancement parameters: histogram equalization, contrast stretching, and adaptive filtering. Finally, the enhanced image is classified using a Convolutional Neural Network (CNN) architecture, with weight updates performed iteratively using the Stochastic Gradient Descent (SGD) model to minimize the loss function. A comparative analysis is conducted to evaluate the superiority of the proposed model. The experiments of the proposed model achieves an F1-score of 98.2%, kappa statistics of 98.3%, SSIM of 0.99, PSNR of 38.81 dB, RMSE of 1.97, and UQI of 0.85. These findings indicate that the proposed model outperforms other existing HSI enhancement and classification models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-Qaness, M.A., Gandomi, A.H.: Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021)

    Article  Google Scholar 

  • Adiwijaya, W.U., Lisnawati, E., Aditsania, A., Kusumo, D.S.: Dimensionality reduction using principal component analysis for cancer detection based on microarray data classification. J. Comput. Sci. 14(11), 1521–1530 (2018)

    Article  Google Scholar 

  • Ahmed AL-Kubaisi, M., Shafri, H.Z.M., Ismail, M.H., Yusof, M.J.M., Hashim, S.J.B.: Hyperspectral image classification by integrating attention-based LSTM and hybrid spectral networks. Int. J. Remote Sens. 43(9), 3450–3469 (2022)

    Article  Google Scholar 

  • Beirami, B.A., Mokhtarzade, M.: A New deep learning approach for hyperspectral image classification based on multifeature local kernel descriptors. Adv. Space Res. (2023)

  • Chen, H., Miao, F., Chen, Y., Xiong, Y., Chen, T.: A hyperspectral image classification method using multifeature vectors and optimized KELM. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 2781–2795 (2021)

    Article  ADS  Google Scholar 

  • Dai, X., Cheng, J., Guo, S., Wang, C., Qu, G., Liu, W., Li, W., Lu, H., Wang, Y., Zeng, B., Peng, Y.: Optimization strategy of a stacked autoencoder and deep belief network in a hyperspectral remote-sensing image classification model. Discrete Dyn. Nature Soc. (2023)

  • Dong, W., Zhou, C., Wu, F., Wu, J., Shi, G., Li, X.: Model-guided deep hyperspectral image super-resolution. IEEE Trans. Image Process. 30, 5754–5768 (2021)

    Article  ADS  PubMed  Google Scholar 

  • Gao, H., Chen, Z., Li, C.: Sandwich convolutional neural network for hyperspectral image classification using spectral feature enhancement. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 3006–3015 (2021)

    Article  ADS  Google Scholar 

  • Ghaderizadeh, S., Abbasi-Moghadam, D., Sharifi, A., Zhao, N., Tariq, A.: Hyperspectral image classification using a hybrid 3D–2D convolutional neural networks. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 7570–7588 (2021)

    Article  ADS  Google Scholar 

  • Hu, W.S., Li, H.C., Pan, L., Li, W., Tao, R., Du, Q.: Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(6), 4237–4250 (2020)

    Article  ADS  Google Scholar 

  • Jia, S., Zhu, S., Wang, Z., Xu, M., Wang, W., Guo, Y.: Diffused convolutional neural network for hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 61, 1–15 (2023)

    Google Scholar 

  • Jiang, X., Xiong, L., Yan, Q., Zhang, Y., Liu, X., Cai, Z.: Unsupervised dimensionality reduction for hyperspectral imagery via laplacian regularized collaborative representation projection. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  • Li, Q., Wang, Q., Li, X.: Mixed 2D/3D convolutional network for hyperspectral image super-resolution. Remote Sens. 12(10), 1660 (2020)

    Article  ADS  Google Scholar 

  • Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktsson, J.A.: Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 57(9), 6690–6709 (2019)

    Article  ADS  Google Scholar 

  • Liu, J., Wu, Z., Xiao, L., Sun, J., Yan, H.: A truncated matrix decomposition for hyperspectral image super-resolution. IEEE Trans. Image Process. 29, 8028–8042 (2020a)

    Article  ADS  MathSciNet  Google Scholar 

  • Liu, Q., Xiao, L., Yang, J., Wei, Z.: CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(10), 8657–8671 (2020b)

    Article  ADS  Google Scholar 

  • Liu, R., Cai, W., Li, G., Ning, X., Jiang, Y.: Hybrid dilated convolution guided feature filtering and enhancement strategy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  • Lv, Q., Feng, W., Quan, Y., Dauphin, G., Gao, L., Xing, M.: Enhanced-random-feature-subspace-based ensemble CNN for the imbalanced hyperspectral image classification. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 14, 3988–3999 (2021)

    Article  ADS  Google Scholar 

  • Merzoug, B., Ouslim, M., Mostefai, L., Benouis, M.: Evaluation of dimensionality reduction using PCA on EMG-based signal pattern classification. Eng. Proc. 14(1), 23 (2022)

    Google Scholar 

  • Mohan, A., Venkatesan, M.: HybridCNN based hyperspectral image classification using multiscale spatiospectral features. Infrared Phys. Technol. 108, 103326 (2020)

    Article  Google Scholar 

  • Munishamaiaha, K., Kannan, S.K., Venkatesan, D., Jasiński, M., Novak, F., Gono, R., Leonowicz, Z.: Hyperspectral image classification with deep CNN using an enhanced elephant herding optimization for updating hyper-parameters. Electronics 12(5), 1157 (2023)

    Article  Google Scholar 

  • Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A.: Scalable recurrent neural network for hyperspectral image classification. J. Supercomput. 76, 8866–8882 (2020)

    Article  Google Scholar 

  • Parmaksiz, H., Yuzgec, U., Dokur, E., Erdogan, N.: Mutation based improved dragonfly optimization algorithm for a neuro-fuzzy system in short term wind speed forecasting. Knowl.-Based Syst. 268, 110472 (2023)

    Article  Google Scholar 

  • Roy, S.K., Manna, S., Song, T., Bruzzone, L.: Attention-based adaptive spectral–spatial kernel ResNet for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(9), 7831–7843 (2020)

    Article  ADS  Google Scholar 

  • Shah, C., Du, Q., Xu, Y.: Enhanced TabNet: Attentive interpretable tabular learning for hyperspectral image classification. Remote Sensing 14(3), 716 (2022)

    Article  ADS  Google Scholar 

  • Shi, G., Huang, H., Wang, L.: Unsupervised dimensionality reduction for hyperspectral imagery via local geometric structure feature learning. IEEE Geosci. Remote Sens. Lett. 17(8), 1425–1429 (2019)

    Article  ADS  Google Scholar 

  • Wang, J., Gao, F., Dong, J., Du, Q.: Adaptive dropblock-enhanced generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(6), 5040–5053 (2020)

    Article  ADS  Google Scholar 

  • Xie, W., Jia, X., Li, Y., Lei, J.: Hyperspectral image super-resolution using deep feature matrix factorization. IEEE Trans. Geosci. Remote Sens. 57(8), 6055–6067 (2019)

    Article  ADS  Google Scholar 

  • Yang, J., Zhao, Y.Q., Chan, J.C.W., Xiao, L.: A multi-scale wavelet 3D-CNN for hyperspectral image super-resolution. Remote Sens. 11(13), 1557 (2019)

    Article  ADS  Google Scholar 

  • Ye, A., Zhou, X., Miao, F.: Innovative hyperspectral image classification approach using optimized CNN and ELM. Electronics 11(5), 775 (2022)

    Article  Google Scholar 

  • Yin, J., Qi, C., Chen, Q., Qu, J.: Spatial-spectral network for hyperspectral image classification: A 3-D CNN and Bi-LSTM framework. Remote Sens. 13(12), 2353 (2021)

    Article  ADS  Google Scholar 

  • Zhang, F., Bai, J., Zhang, J., Xiao, Z., Pei, C.: An optimized training method for GAN-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 18(10), 1791–1795 (2020a)

    Article  ADS  Google Scholar 

  • Zhang, L., Nie, J., Wei, W., Zhang, Y., Liao, S. and Shao, L.: Unsupervised adaptation learning for hyperspectral imagery super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3073–3082 (2020)

  • Zhou, L., Xu, E., Hao, S., Ye, Y., Zhao, K.: Data-wise spatial regional consistency re-enhancement for hyperspectral image classification. Remote Sens. 14(9), 2227 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All agreed on the content of the study. VL and BL collected all the data for analysis. VL agreed on the methodology. VL and BL completed the analysis based on agreed steps. Results and conclusions are discussed and written together. The author read and approved the final manuscript.

Corresponding author

Correspondence to V. Lalitha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalitha, V., Latha, B. A novel model for hyper spectral image enhancement and classification: PCA, MBAO and CNN integration. Opt Quant Electron 56, 473 (2024). https://doi.org/10.1007/s11082-023-06101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-06101-z

Keywords

Navigation