Skip to main content
Log in

Exploring stochastic dynamics with different wave structures for the Nizhnik–Novikov–Veselov system and their applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The article is focused on the analysis of a mathematical model known as the Nizhnik–Novikov–Veselov (SNNV) system, which incorporates a specialized mathematical tool called the truncated M-fractional derivative (TMD). This model has broad applications in various scientific fields and considered an isotropic Lax extension of the one-dimensional Kdv equation which has diverse applications in the areas of warm ions, shallow water waves, electromagnetic signals, and river irrigation flows. To extract the solutions of the SNNV system, a modified version of the extended tanh-function method which is known as amended extended tanh-function method (AETF) is brought into play to derive solitary wave solutions for the SNNV system. These formulated solutions are categorized as trigonometric, exponential, and hyperbolic functions. For physical exemplification and knowledge of the dynamic physical features of the governing model, some reported solutions have been deliberated graphically by selecting appropriate parametric values. The computed outcomes have implications in diverse areas of applied sciences such as quantum mechanics, magneto-electrodynamics, heavy ion collisions, optical fiber technology and also opens doors to practical applications in diverse domains. The application of the AETF approach in this study demonstrates its efficiency and competence in scrutinizing and extracting soliton solutions in nonlinear partial differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

As this research did not involve the creation or examination of any datasets, data sharing is not relevant in this context.

References

  • Abd Elaziz, M., Yousri, D., Al-qaness, M.A., AbdelAty, A.M., Radwan, A.G., Ewees, A.A.: A Grunwald–Letnikov based Manta ray foraging optimizer for global optimization and image segmentation. Eng. Appl. Artif. Intell. 98, 104105 (2021)

    Article  Google Scholar 

  • Abdelwahab, A.M., Mekheimer, K.S., Ali, K.K., El-Kholy, A., Sweed, N.S.: Numerical simulation of electroosmotic force on micropolar pulsatile bloodstream through aneurysm and stenosis of carotid. Waves Random Complex Med. 21, 1–32 (2021)

    Google Scholar 

  • Ahmad, J., Mohyud-Din, S.T.: An efficient algorithm for some highly nonlinear fractional PDEs in mathematical physics. PLoS ONE 9(12), 109127 (2014)

    Article  CAS  Google Scholar 

  • Ahmad, J., Rani, S., Turki, N.B., Shah, N.A.: Novel resonant multi-soliton solutions of time fractional coupled nonlinear Schrodinger equation in optical fiber via an analytical method. Res. Phys. 52, 106761 (2023a)

    Google Scholar 

  • Ahmad, J., Mustafa, Z., Turki, N.B., Shah, N.A.: Solitary wave structures for the stochastic Nizhnik–Novikov–Veselov system via modified generalized rational exponential function method. Res. Phys. 52, 106776 (2023b)

    Google Scholar 

  • Al-Amr, M.O., Rezazadeh, H., Ali, K.K., Korkmazki, A.: N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities. Commun. Theor. Phys. 72(6), 065503 (2020)

    Article  Google Scholar 

  • Al-Askar, F.M., Cesarano, C., Mohammed, W.W., El-Morshedy, M.: Solitary wave solutions of the fractional-stochastic quantum Zakharov–Kuznetsov equation arises in quantum magneto plasma. Mathematics 11(2), 488 (2023)

    Google Scholar 

  • Ali, M., Alquran, M., Jaradat, I.: Asymptotic-sequentially solution style for the generalized Caputo time-fractional Newell-Whitehead-Segel system. Adv. Differ. Equ. 2019(1), 1–9 (2019)

    Article  MathSciNet  Google Scholar 

  • Ali, M., Alquran, M., Jaradat, I.: Explicit and approximate solutions for the conformable-Caputo time-fractional diffusive Predator-Prey model. Int. J. Appl. Comput. Math. 7(3), 90 (2021)

    Article  MathSciNet  Google Scholar 

  • Ali, A., Ahmad, J., Javed, S.: Exact soliton solutions and stability analysis to (3+1)-dimensional nonlinear Schrödinger model. Alex. Eng. J. 76, 747–756 (2023)

    Article  Google Scholar 

  • Almusawa, H., Jhangeer, A.: Nonlinear self-adjointness, conserved quantities and Lie symmetry of dust size distribution on a shock wave in quantum dusty plasma. Commun. Nonlinear Sci. Numer. Simul. 114, 106660 (2022)

  • Almusawa, H., Ali, K.K., Wazwaz, A.M., Mehanna, M.S., Baleanu, D., Osman, M.S.: Protracted study on a real physical phenomenon generated by media inhomogeneities. Res. Phys. 31, 104933 (2021)

    Google Scholar 

  • Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equ. Appl. Math. 7, 100506 (2023)

    Google Scholar 

  • Alquran, M., Jaradat, I.: Identifying combination of Dark-Bright Binary-Soliton and Binary-Periodic Waves for a new two-mode model derived from the (2+1)-dimensional Nizhnik–Novikov–Veselov equation. Mathematics 11(4), 861 (2023)

    Article  Google Scholar 

  • Arora, S., Mathur, T., Agarwal, S., Tiwari, K., Gupta, P.: Applications of fractional calculus in computer vision: a survey. Neurocomputing 489, 407–428 (2022)

    Article  Google Scholar 

  • Cattani, C., Sulaiman, T.A., Baskonus, H.M., Bulut, H.: On the soliton solutions to the Nizhnik–Novikov–Veselov and the Drinfel’d-Sokolov systems. Opt. Quant. Electron. 50, 1–11 (2018)

    Article  Google Scholar 

  • Cesarano, C., Aly, E.S., Mohammed, W.W., Al-Askar, F.M.: The soliton solutions of the stochastic shallow water wave equations in the sense of beta-derivative. Mathematics 11(6), 1338 (2023)

    Google Scholar 

  • Chandra, S., Abbas, S.: Analysis of fractal dimension of mixed Riemann-Liouville integral. Numer. Algorithms 91(3), 1021–1046 (2022)

    Article  MathSciNet  Google Scholar 

  • Chen, W., Sun, H., Li, X.: Fractional derivative modeling in mechanics and engineering. Beijing, China, Springer (2022)

    Book  Google Scholar 

  • Choi, J.H., Kim, H.: Coupled fractional traveling wave solutions of the extended Boussinesq-Whitham-Broer-Kaup-type equations with variable coefficients and fractional order. Symmetry 13(8), 1396 (2021)

    Article  Google Scholar 

  • Dan, J., Sain, S., Ghose-Choudhury, A., Garai, S.: Application of the Kudryashov function for finding solitary wave solutions of NLS type differential equations. Optik 224, 165519 (2020)

    Article  Google Scholar 

  • Duhe, J.F., Victor, S., Melchior, P., Abdelmounen, Y., Roubertie, F.: Fractional derivative truncation approximation for real-time applications. Commun. Nonlinear Sci. Numer. Simul. 119, 107096 (2023)

  • El-shamy, O., El-barkoki, R., Ahmed, H.M., Abbas, W., Samir, I.: Exploration of new solitons in optical medium with higher-order dispersive and nonlinear effects via improved modified extended tanh function method. Alex. Eng. J. 68, 611–618 (2023)

    Article  Google Scholar 

  • Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponential rational function method. Mod. Phys. Lett. B 33(09), 1950106 (2019)

    Article  MathSciNet  Google Scholar 

  • Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with conformable derivative. Front. Phys. 8, 167 (2020)

    Article  Google Scholar 

  • Ghanbari, B., Baleanu, D.: Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations. Res. Phys. 44, 106171 (2023)

    Google Scholar 

  • Ghanbari, B., Gómez-Aguilar, J.F.: New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio-temporal dispersion involving M-derivative. Mod. Phys. Lett. B 33(20), 1950235 (2019)

    Article  Google Scholar 

  • Ilhan, E., Kiymaz, I.O.: A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 5(1), 171–188 (2020)

    Article  MathSciNet  Google Scholar 

  • Jhangeer, A., Hussain, A., Junaid-U-Rehman, M., Baleanu, D., Riaz, M.B.: Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation. Chaos Solitons Fractals 143, 110578 (2021)

    Article  MathSciNet  Google Scholar 

  • Jhangeer, A., Almusawa, H., Hussain, Z.: Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution. Res. Phys. 37, 105492 (2022)

    Google Scholar 

  • Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. Eur. Phys. J. Plus 136(4), 1–28 (2021)

    Article  Google Scholar 

  • Khater, M.M., Muhammad, S., Al-Ghamdi, A., Higazy, M.: Abundant wave structures of the fractional Benjamin-Ono equation through two computational techniques. J. Ocean Eng. Sci. 1–5 (2022)

  • Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)

    Article  MathSciNet  Google Scholar 

  • Leake, C., Johnston, H., Mortari, D.: The multivariate theory of functional connections: Theory, proofs, and application in partial differential equations. Mathematics 8(8), 1303 (2020)

    Article  Google Scholar 

  • Lou, S.Y.: On the coherent structures of the Nizhnik–Novikov–Veselov equation. Phys. Lett. A 277(2), 94–100 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Manafian, J., Ilhan, O.A., Avazpour, L., Alizadeh, A.A.: N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation arise from a model for an incompressible fluid. Math. Methods Appl. Sci. 43(17), 9904–9927 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Manukure, S., Chowdhury, A., Zhou, Y.: Complexiton solutions to the asymmetric Nizhnik–Novikov–Veselov equation. Int. J. Mod. Phys. B 33(11), 1950098 (2019)

    Article  MathSciNet  Google Scholar 

  • Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)-dimensional nonlinear Schrodinger equation. J. Nonlinear Opt. Phys. Mater. 32(2), 2350016 (2023)

  • Mekheimer, K.S., Abo-Elkhair, R.E., Ali, K.K., Keshta, M.G.: Entropy generation and curvature effect on peristaltic thrusting of (Cu-Al2O3) hybrid nanofluid in resilient channel: Nonlinear analysis. Heat Trans. 50(8), 7918–7948 (2021)

    Article  Google Scholar 

  • Mohamed, M.S., Akinyemi, L., Najati, S.A., Elagan, S.K.: Abundant solitary wave solutions of the Chen-Lee-Liu equation via a novel analytical technique. Opt. Quant. Electron. 54(3), 141 (2022)

  • Mohammed, W.W., El-Morshedy, M.: The influence of multiplicative noise on the stochastic exact solutions of the @@@@ system. Math. Comput. Simul. 190, 192–202 (2021)

    Article  Google Scholar 

  • Mohammed, W.W., El-Morshedy, M.: The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik–Novikov–Veselov system. Math. Comput. Simul. 190, 192–202 (2021)

    Article  MathSciNet  Google Scholar 

  • Mohammed, W.W., El-Morshedy, M., Moumen, A., Ali, E.E., Benaissa, M., Abouelregal, A.E.: Effects of M-truncated derivative and multiplicative noise on the exact solutions of the breaking soliton equation. Symmetry 15(2), 288 (2023)

    Article  Google Scholar 

  • Omame, A., Abbas, M., Onyenegecha, C.P.: A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana–Baleanu derivative. Chaos Solitons Fractals 153, 111486 (2021)

  • Osman, M.S., Ali, K.K.: Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations. Optik 209, 164589 (2020)

    Article  Google Scholar 

  • Rafiq, M.H., Jhangeer, A., Raza, N.: The analysis of solitonic, supernonlinear, periodic, quasiperiodic, bifurcation and chaotic patterns of perturbed Gerdjikov-Ivanov model with full nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 116, 106818 (2023)

  • Rani, A., Ashraf, M., Shakeel, M., Mahmood-Ul-Hassan, Q., Ahmad, J.: Analysis of some new wave solutions of DNA-Peyrard-Bishop equation via mathematical method. Mod. Phys. Lett. B 36(21), 2250047 (2022)

  • Raza, N., Jhangeer, A., Arshed, S., Inc, M.: The chaotic, supernonlinear, periodic, quasiperiodic wave solutions and solitons with cascaded system. Waves in random and complex media, 1-15 (2021)

  • Shaikh, T.S., Baber, M.Z., Ahmed, N., Iqbal, M.S., Akgül, A., El Din, S.M.: Investigation of solitary wave structures for the stochastic Nizhnik–Novikov–Veselov (SNNV) system. Res. Phys. 48, 106389 (2023)

    Google Scholar 

  • Sousa, J.V.C., de Oliveira, E.C.: A new truncated \(M\)-fractional derivative type unifying some fractional derivative types with classical properties. arXiv preprint arXiv:1704.08187 (2017)

  • Tian, H., Niu, Y., Ghanbari, B., Zhang, Z., Cao, Y.: Integrability and high-order localized waves of the (4+ 1)-dimensional nonlinear evolution equation. Chaos Solitons Fractals 162, 112406 (2022)

  • Tremblay, R.: Fractional derivatives of logarithmic singular functions and applications to special functions. Montes Taurus J. Pure Appl. Math. 3(1), 7–37 (2021)

    Google Scholar 

  • Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 140, 110107 (2020)

    Article  MathSciNet  Google Scholar 

  • Wu, G., Guo, Y.: New complex wave solutions and diverse wave structures of the (2+ 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equation. Fractal Fract. 7(2), 170 (2023)

    Article  MathSciNet  Google Scholar 

  • Zhao, Z., He, L.: Resonance y-type soliton and hybrid solutions of a (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Appl. Math. Lett. 122, 107497 (2021)

    Article  MathSciNet  Google Scholar 

  • Zulfiqar, A., Ahmad, J.: Exact solitary wave solutions of fractional modified Camassa–Holm equation using an efficient method. Alex. Eng. J. 59(5), 3565–3574 (2020)

    Article  Google Scholar 

  • Zulfiqar, A., Ahmad, J.: New optical solutions of conformable fractional perturbed Gerdjikov–Ivanov equation in mathematical nonlinear optics. Res. Phys. 21, 103825 (2021)

    Google Scholar 

Download references

Acknowledgements

Not Applicable.

Funding

The authors confirm that they do not receive any financial compensation.

Author information

Authors and Affiliations

Authors

Contributions

J.A. Resources, Supervision, Validation, acquisition. S.R. Conceptualization, Methodology, Writing—original draft, Formal analysis, Validation. Software.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no known financial or interpersonal conflicts that would have appeared to have an impact on the research presented in this study.

Ethical approval

The authors of this research have unanimously agreed and granted their consent for the publication of their work.

Consent for publication

All authors have provided their approval and consent for the publication of this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Rani, S. Exploring stochastic dynamics with different wave structures for the Nizhnik–Novikov–Veselov system and their applications. Opt Quant Electron 56, 453 (2024). https://doi.org/10.1007/s11082-023-05899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05899-y

Keywords

Navigation