Skip to main content
Log in

Bifurcation analysis and new exact complex solutions for the nonlinear Schrödinger equations with cubic nonlinearity

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Nonlinear Schrödinger equations with cubic nonlinearity are a model of wave propagation in fiber optics and have numerous nonlinear effects in four-wave mixing, ultrashort pulses, second-harmonic generation, self-phase modulation, stimulated raman scattering, etc. In this study, we apply the modified \((G'/G)\)-expansion scheme to the Nonlinear Schrödinger equations with cubic nonlinearity in order to obtain numerous new exact complex wave solutions and their Bifurcation analyses. Despite the fact that numerous new exact complex wave solutions and bifurcation analyses had previously been determined for Nonlinear Schrödinger equations with cubic nonlinearity by a number of researchers, this study yielded not only more precise wave solutions but also new exact complex wave solutions and their Bifurcation analyses.Wave propagation in soliton physics, modulus instability in plasma physics, and soliton propagation in optical fibers may be better understood with the acquired information. To examine the nonlinear effects of the Nonlinear Schrödinger equations with cubic nonlinearity, 2D, 3D, contour, and BA diagrams are created. The Hamiltonian function is established to further the analysis of the phase plane’s dynamics. The simulations were conducted using Python and MAPLE software tools. Therefore, the modified \((G'/G)\)-expansion scheme solution procedure is more straightforward than other conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Available on reasonable request.

References

  • Ablowitz, M., Segur, D.H.: Solitons and the Inverse Scattering Transform. Siam, Philadelphia (1981)

    Book  Google Scholar 

  • Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  • Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and continuous nonlinear Schrödinger systems. Bull. New Ser. Am. Math. Soc. 43(1), 127–132 (2005)

    Article  Google Scholar 

  • Achab, A.E.: Constructing of exact solutions to the nonlinear Schröodinger equation (NLSE) with power-law nonlinearity by the Weierstrass elliptic function method. Optik 127(3), 1229–1232 (2016)

    Article  ADS  Google Scholar 

  • Akram, S., Ahmad, J., Rehman, S.U., Alkarni, S., Shah, N.A.: Analysis of lump solutions and modulation instability to fractional complex Ginzburg–Landau equation arise in optical fibers. Res. Phys. 53, 106991 (2023)

    Google Scholar 

  • Alam, M.N.: Exact solutions to the foam drainage equation by using the new generalized \(G^{\prime }/G\)-expansion method. Res. Phys. 5, 168–177 (2015)

    Google Scholar 

  • Alam, M.N.: Soliton solutions to the electric signals in telegraph lines on the basis of the tunnel diode. Partial Differ. Equ. Appl. Math. 7, 100491 (2023)

    Article  Google Scholar 

  • Alam, M.N.: An analytical technique to obtain traveling wave solutions to nonlinear models of fractional order. Partial Differ. Equ. Appl. Math. 8, 100533 (2023)

    Article  Google Scholar 

  • Alam, M.N., Alam, M.M.: An analytical method for solving exact solutions of a nonlinear evolution equation describing the dynamics of ionic currents along microtubules. J. Taibah Univ. Sci. 11(6), 939–948 (2017)

    Article  Google Scholar 

  • Alam, M.N., Belgacem, F.B.M.: Microtubules nonlinear models dynamics investigations through the \(exp(-\phi (\xi ))\)-expansion method implementation. Mathematics 4(1), 6 (2016)

    Article  MathSciNet  Google Scholar 

  • Alam, M.N., Tunc, C.: An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator-prey system. Alex. Eng. J. 55(2), 1855–1865 (2016)

    Article  Google Scholar 

  • Alam, M.N., Akbar, M.A., Mohyud-Din, S.T.: A novel \((G^{\prime }/G)\)-expansion method and its application to the Boussinesq equation. Chin. Phys. B 23(2), 020203–020210 (2014)

    Article  Google Scholar 

  • Alam, M.N., Talib, I., Tunc, C.: The new soliton configurations of the 3D fractional model in arising shallow water waves. Int. J. Appl. Comput. Math. 9, 75 (2023)

    Article  MathSciNet  Google Scholar 

  • Ali, A., Ahmad, J., Javed, S., Rehman, S.U.: Exact soliton solutions and stability analysis to (3 + 1)-dimensional nonlinear Schrödinger model. Alex. Eng. J. 76, 747–756 (2023)

    Article  Google Scholar 

  • Baskonus, H.M., Bulut, H.: Exponential prototype structure for \((2+1)\)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Random Complex Media 26(2), 189–196 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Bilal, M., Ren, J.: Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Opt. Quant. Electron. 54, 40 (2022)

    Article  Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics. Opt. Quant. Electron. 53, 522 (2021a)

    Article  Google Scholar 

  • Bilal, M., Hu, W., Ren, J.: Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136, 385 (2021b)

    Article  Google Scholar 

  • Bilal, M., Ren, J., Younas, U.: Stability analysis and optical soliton solutions to the nonlinear Schrödinger model with efficient computational techniques. Opt. Quant. Electron. 53, 406 (2021c)

    Article  Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions to the coupled nonlinear system using reliable analytical mathematical approaches. Commun. Theor. Phys. 73, 085005 (2021d)

    Article  ADS  MathSciNet  Google Scholar 

  • Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode optical fibers to the generalized nonlinear Schrödinger system by compatible techniques. Int. J. Math. Comput. Eng. 1(2), 149–170 (2023a)

    Article  Google Scholar 

  • Bilal, M., Ren, J., Inc, M., Alqahtani, R.T.: Dynamics of solitons and weakly ion-acoustic wave structures to the nonlinear dynamical model via analytical techniques. Opt. Quant. Electron. 55, 656 (2023b)

    Article  Google Scholar 

  • Bilal, M., Ren, J., Inc, M., Alhefthi, R.K.: Optical soliton and other solutions to the nonlinear dynamical system via two efficient analytical mathematical schemes. Opt. Quant. Electron. 55, 938 (2023c)

    Article  Google Scholar 

  • Biswas, A., Konar, S.: Introduction to Non-Kerr Law Optical Solitons. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M.: On the new soliton and optical wave structures to some nonlinear evolution equations. Eur. Phys. J. Plus 132, 459 (2017)

    Article  Google Scholar 

  • Bulut, H., Sulaiman, T.A., Baskonus, H.M., Akturk, T.: Complex acoustic gravity wave behaviors to some mathematical models arising in fluid dynamics and nonlinear dispersive media. Opt. Quant. Electron. 50, 19 (2018)

    Article  Google Scholar 

  • Carter, J.D., Deconinck, B.: Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation. Phys. D 214(1), 42–54 (2006)

    Article  MathSciNet  Google Scholar 

  • Drazin, P.G., Johnson, R.S.: Solitions: An Introduction. Cambridge University Press, New York (1993)

    Google Scholar 

  • Engui, F.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)

    MathSciNet  Google Scholar 

  • Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, New York (1995)

    Book  Google Scholar 

  • Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (1980)

    Book  Google Scholar 

  • Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Res. Phys. 49, 106520 (2023)

    Google Scholar 

  • Kalaawy, O.H.E., Ibrahim, R.S.: Solitary wave solution of the two-dimensional regularized long wave and Davey–Stewartson equations in fluids and plasmas. Appl. Math. 3(8), 833–843 (2012)

    Article  Google Scholar 

  • Kaup, D., Malomed, B.: Soliton trapping and daughter waves in the Manakov model. Phys. Rev. A 48, 599–604 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kaya, D., Sayed, S.M.E.: On the solution of the couples Schrödinger–KdV equation by the decomposition method. Phys. Lett. A 313(1–2), 82–88 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Lax, P.D.: periodic solutions of the Korteweg–de Vries equation. Commun. Pure Appl. Math. 28(1), 141–188 (1975)

    Article  Google Scholar 

  • Liu, D.: Jacobi elliptic function solutions for two variant Boussinesq equations. Chaos Solitons Fractals 24(5), 1373–1385 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Ma, X., Pan, Y., Chang, L.: Explicit travelling wave solutions in a magneto-electro-elastic circular rod. Int. J. Comput. Sci. 10(1), 62–68 (2013)

    Google Scholar 

  • Manakov, S.V.: Remarks on the integrals of the scale methods to the study of optical fiber Euler equations of the n-dimensional heavy top transmission. Funct. Anal. Appl. 10, 93–94 (1976)

    Google Scholar 

  • Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)(3+1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32, 2350016 (2023)

    Article  ADS  Google Scholar 

  • Mathanaranjan, T.: New Jacobi elliptic solutions and other solutions in Ootical metamaterials having higher-order dispersion and its stability analysis. Int. J. Appl. Comput. Math 9, 66 (2023)

    Article  MathSciNet  Google Scholar 

  • Mathanaranjan, T.: Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation. Optik 290, 171266 (2023)

    Article  ADS  Google Scholar 

  • Mathanaranjan, T., Vijayakumar, D.: New soliton solutions in nano-fibers with space-time fractional derivatives. Fractals 30, 2250141 (2022)

    Article  ADS  Google Scholar 

  • Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quant. Electron. 54, 271 (2022)

    Article  Google Scholar 

  • Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., Akinyemi, L., Bekir, A.: Chirped optical solitons and stability analysis of the nonlinear Schrödinger equation with nonlinear chromatic dispersion. Commun. Theor. Phys. 75, 085005 (2023)

    Article  ADS  Google Scholar 

  • Menyuk, C.: Application of multiple-length-scale methods to the study of optical fiber transmission. J. Eng. Math. 36(1–2), 113–136 (1999)

    Article  MathSciNet  Google Scholar 

  • Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.A.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quant. Electron. 55, 868 (2023a)

    Article  Google Scholar 

  • Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical dynamical model. Res. Phys. 51, 106722 (2023b)

    Google Scholar 

  • Ozis, T., Yildirim, A.: Reliable analysis for obtaining exact soliton solutions of nonlinear Schrödinger (NLS) equation. Chaos Solitons Fractals 38(1), 209–212 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Rehman, S.U., Ahmad, J.: Stability analysis and novel optical pulses to Kundu-Mukherjee-Naskar model in birefringent fibers. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979224501923

    Article  Google Scholar 

  • Rehman, S.U., Ahmad, J.: Investigation of exact soliton solutions to Chen–Lee–Liu equation in birefringent fibers and stability analysis. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.026

    Article  Google Scholar 

  • Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98, 035216 (2023)

    Article  ADS  Google Scholar 

  • Rehman, S.U., Bilal, M., Ahmad, J.: Highly dispersive optical and other soliton solutions to fiber Bragg gratings with the application of different mechanisms. Int. J. Mod. Phys. B 36, 2250193 (2022)

    Article  ADS  CAS  Google Scholar 

  • Rehman, S.U., Bilal, M., Inc, M., Younas, U., Rezazadeh, H., Younis, M., Alizamini, S.M.M.: Investigation of pure-cubic optical solitons in nonlinear optics. Opt. Quant. Electron. 54, 400 (2022)

    Article  Google Scholar 

  • Rehman, S.U., Ahmad, J., Muhammad, T.: Dynamics of novel exact soliton solutions to Stochastic Chiral Nonlinear Schrödinger Equation. Alex. Eng. J. 79, 568–580 (2023)

    Article  Google Scholar 

  • Seadawy, A.R., Lu, D.C., Arshad, M.: Stability analysis of solitary wave solutions for coupled and \((2+1)\)-dimensional cubic Klein–Gordon equations and their applications. Commun. Theor. Phys. 69(6), 676–686 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Serna, J.M.S.: Conservative and nonconservative schemes for the solution of non-linear Schrödinger equation. IMA J. Numer. Anal. 6(1), 25–42 (1986)

    Article  MathSciNet  Google Scholar 

  • Shakeel, M., Iqbal, M.A., Mohyud-Din, S.T.: Closed form solutions for nonlinear biological population model. Math. Comput. Model. 26(1), 207–223 (2018)

    MathSciNet  Google Scholar 

  • Shakeel, M., Mohyud-Din, S.T., Iqbal, M.A.: Modified extended exp-function method for system of nonlinear partial differential equations defined by seismic sea waves. Pramana J. Phys. 91(2), 28 (2018)

    Article  ADS  Google Scholar 

  • Sweilam, N.H.: Variational iteration method for solving cubic nonlinear Schrödinger equation. J. Comput. Appl. Math. 207(1), 155–163 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Tariq, K.U., Seadawyd, A.: Soliton solutions for \((2+1)\) and \((3+1)\)-dimensional Kadomtsev Petviashvili–Benjamin–Bona–Mahony model equations and their applications. Filomat 32(2), 531–542 (2018)

    Article  MathSciNet  Google Scholar 

  • Wang, M.L., Zhang, J.L., Li, X.Z.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Wazwaz, A.M.: Partial Differential Equations: Method and Applications. Taylor and Francis, London (2002)

    Google Scholar 

  • Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)

    Article  MathSciNet  Google Scholar 

  • Wazwaz, A.M.: Reliable analysis for nonlinear Schrödinger equations with a cubic nonlinearity and power law nonlinearity. Math. Comput. Model. 43(1–2), 178–184 (2006)

    Article  MathSciNet  Google Scholar 

  • Yan, Z.: Generalized method and its application in the higher order Schröodinger equation in nonlinear optical fibers. Chaos Solitons Fractals 16(5), 759–766 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Althobaiti, S.: Diverse wave propagation in shallow water waves with the Kadomtsev–Petviashvili–Benjamin–Bona–Mahony and Benney-Luke integrable models. Open Phys. 19, 808–818 (2021)

    Article  Google Scholar 

  • Younas, U., Sulaiman, T.A., Ismael, H.F., Shah, N.A., Eldin, S.M.: On the lump interaction phenomena to the conformable fractional (2+1)-dimensional KdV equation. Res. Phys. 52, 106863 (2023)

    Google Scholar 

  • Younas, U., Baber, M.Z., Yasin, M.W., Sulaiman, T.A., Ren, J.: The generalized higher-order nonlinear Schrödinger equation: optical solitons and other solutions in fiber optics. Int. J. Mod. Phys. B 37, 2350174 (2023)

    Article  ADS  Google Scholar 

  • Zhang, H.: New exact complex travelling wave solutions to nonlinear Schrödinger (NLS) equation. Commun. Nonlinear Sci. Numer. Simul. 14(3), 668–673 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, J., Wei, X., Lu, Y.: A generalized \((G^{\prime }/G)\)-expansion method and its applications. Phys. Lett. A 372(20), 3653–3658 (2008)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Zhang, J., Jiang, F., Zhao, X.: An improved \((G^{\prime }/G)\)-expansion method for solving nonlinear evolution equations. Int. J. Comput. Math. 87(8), 1716–1725 (2010)

    Article  MathSciNet  Google Scholar 

  • Zhao, Y.H., Mathanaranjan, T., Rezazadeh, H., Akinyemi, L., Inc, M.: New solitary wave solutions and stability analysis for the generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Res. Phys. 3, 106083 (2022)

    Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the preparation, drafting, editing and reviewing of the manuscript.

Corresponding author

Correspondence to Md Nur Alam.

Ethics declarations

Conflict of interest

The authors declare that there is no confict with publication ethics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.N., Alp İlhan, O., Akash, H.S. et al. Bifurcation analysis and new exact complex solutions for the nonlinear Schrödinger equations with cubic nonlinearity. Opt Quant Electron 56, 302 (2024). https://doi.org/10.1007/s11082-023-05863-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05863-w

Keywords

Mathematics Subject Classification

Navigation