Skip to main content
Log in

A comparative study of two fractional nonlinear optical model via modified \(\left( \frac{G^{\prime }}{G^2}\right)\)-expansion method

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article reveals the different types of optical solitons of non-linear coupled Riemann wave equation and Wazwaz Kaur Boussinesq equation. We adopted a direct integration technique namely, modified \(\left( \frac{G^{\prime }}{G^2}\right)\)-expansion. Different sorts of soliton’s existence criteria are also presented here. The proposed technique provides the new travelling wave solutions with the aid of different types of derivatives such as beta derivative, M-Truncated derivative and Conformable derivative and also offers special kinds of solutions including rational, trigonometric and hyperbolic solutions. In this work, we compared and analysed solitary wave solutions obtained by using different types of fractional derivatives. The outcomes of the study are highly significant for modern communication network technology, optical fiber, ion-acoustic, magneto-sound waves in plasma, and stationary media, particularly in the propagation of tidal and tsunami waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data will be provided on request.

References

  • Abdulazeez, S.T., Modanli, M.: Analytic solution of fractional order pseudo-hyperbolic telegraph equation using modified double Laplace transform method. Int. J. Math. Comput. Eng. (2023)

  • Alharbi, F.M., Baleanu, D., Ebaid, A.: Physical properties of the projectile motion using the conformable derivative. Chin. J. Phys. 58, 18–28 (2019)

    Google Scholar 

  • Al-Harbi, M., Al-Hamdan, W., Wazzan, L.: Exact traveling wave solutions to Phi-4 equation and Joseph–Egri (TRLW) equation and Calogro–Degasperis (CD) equation by modified \((\frac{G{^{\prime }}}{G^2})\)-expansion method. J. Appl. Math. Phys. 11(7), 2103–2120 (2023)

    Google Scholar 

  • Aljahdaly, N.H., Shah, R., Naeem, M., Arefin, M.A.: A comparative analysis of fractional space-time advection-dispersion equation via semi-analytical methods. J. Funct. Spaces 2022 (2022)

  • Aljahdaly, N.H.: Some applications of the modified \((\frac{G{^{\prime }}}{G^2})\)-expansion method in mathematical physics. Results Phys. 13, 102272 (2019)

    Google Scholar 

  • Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    MathSciNet  ADS  Google Scholar 

  • Alquran, M., Jaradat, I.: Identifying combination of Dark-Bright Binary-Soliton and Binary-Periodic Waves for a new two-mode model derived from the (2 + 1)-dimensional Nizhnik–Novikov–Veselov equation. Mathematics 11(4), 861 (2023)

    Google Scholar 

  • Alquran, M., Jaradat, I., Yusuf, A., Sulaiman, T.A.: Heart-cusp and bell-shaped-cusp optical solitons for an extended two-mode version of the complex Hirota model: application in optics. Opt. Quantum Electron. 53, 1–13 (2021)

    Google Scholar 

  • Ansar, R., Abbas, M., Mohammed, P.O., Al-Sarairah, E., Gepreel, K.A., Soliman, M.S.: Dynamical study of coupled Riemann wave equation involving conformable, beta, and M-truncated derivatives via two efficient analytical methods. Symmetry 15(7), 1293 (2023)

    ADS  Google Scholar 

  • Arefin, M.A., Sadiya, U., Inc, M., Uddin, M.H.: Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique. Opt. Quantum Electron. 54(5), 309 (2022)

    Google Scholar 

  • Arefin, M.A., Khatun, M.A., Islam, M.S., Akbar, M.A., Uddin, M.H.: Explicit soliton solutions to the fractional order nonlinear models through the Atangana beta derivative. Int. J. Theor. Phys. 62(6), 134 (2023)

    MathSciNet  Google Scholar 

  • Arshed, S., Biswas, A., Abdelaty, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with Kundu–Eckhaus equation by exp\(-\phi (\xi )\)-expansion scheme and \((\frac{G{^{\prime }}}{G^2})\)-expansion method. Optik 172, 79–85 (2018)

    ADS  Google Scholar 

  • Arshed, S., Rahman, R.U., Raza, N., Khan, A.K., Inc, M.: A variety of fractional soliton solutions for three important coupled models arising in mathematical physics. Int. J. Mod. Phys. B 36(01), 2250002 (2022)

    ADS  Google Scholar 

  • Atangana, A., Doungmo Goufo, E.F.: Extension of matched asymptotic method to fractional boundary layers problems. Math. Probl. Eng. (2014)

  • Atangana, A., Gómez-Aguilar, J.F.: Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann–Liouville to Atangana–Baleanu. Numer. Methods Partial Differ. Equ. 34(5), 1502–1523 (2018)

    MathSciNet  Google Scholar 

  • Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    MathSciNet  ADS  Google Scholar 

  • Attaullah Shakeel, M., Ahmad, B., Shah, N.A., Chung, J.D.: Solitons solution of Riemann wave equation via modified Exp function method. Symmetry 14(12), 2574 (2022)

    ADS  Google Scholar 

  • Bibi, A., Shakeel, M., Khan, D., Hussain, S., Chou, D.: Study of solitary and kink waves, stability analysis, and fractional effect in magnetized plasma. Results Phys. 44, 106166 (2023)

    Google Scholar 

  • Ezquerro, J.A., Grau, A., Grau-Sánchez, M., Ángel Hernández, M.: On the efficiency of two variants of Kurchatov’s method for solving nonlinear systems. Numer. Algorithms 64, 685–698 (2013)

    MathSciNet  Google Scholar 

  • Gepreel, K.A.: Exact solutions for nonlinear integral member of KPh differential equation using the modified \((\frac{w}{g})\)-expansion method in mathematical physics. Comput. Math. Appl. 72(9), 2072–2083 (2016)

    MathSciNet  Google Scholar 

  • Ghanbari, B., Inc, M.: A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus 133(4), 142 (2018)

    Google Scholar 

  • Hussain, A., Jhangeer, A., Abbas, N., Khan, I., Sherif, E.S.M.: Optical solitons of fractional complex Ginzburg–Landau equation with conformable, beta, and M-truncated derivatives: a comparative study. Adv. Differ. Equ. 2020, 1–19 (2020)

    MathSciNet  Google Scholar 

  • Jannat, N., Kaplan, M., Raza, N.: Abundant soliton-type solutions to the new generalized KdV equation via auto-Bäcklund transformations and extended transformed rational function technique. Opt. Quantum Electron. 54(8), 466 (2022)

    Google Scholar 

  • Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8(7), 1127 (2020)

    Google Scholar 

  • Jaradat, I., Alquran, M.: A variety of physical structures to the generalized equal-width equation derived from Wazwaz–Benjamin–Bona–Mahony model. J. Ocean Eng. Sci. 7(3), 244–247 (2022)

    Google Scholar 

  • Jaradat, I., Alquran, M.: Geometric perspectives of the two-mode upgrade of a generalized Fisher–Burgers equation that governs the propagation of two simultaneously moving waves. J. Comput. Appl. Math. 404, 113908 (2022)

    MathSciNet  Google Scholar 

  • Jaradat, I., Alquran, M., Ali, M.: A numerical study on weak-dissipative two-mode perturbed Burgers’ and Ostrovsky models: right-left moving waves. Eur. Phys. J. Plus 133, 1–6 (2018)

    Google Scholar 

  • Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51(9–10), 1367–1376 (2006)

    MathSciNet  Google Scholar 

  • Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Google Scholar 

  • Khatun, M.A., Arefin, M.A., Uddin, M.H., İnç, M., Akbar, M.A.: An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. J. Ocean Eng. Sci. (2022)

  • Khatun, M.A., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Numerous explicit soliton solutions to the fractional simplified Camassa–Holm equation through two reliable techniques. Ain Shams Eng. J. 102214 (2023)

  • Kopçasız, B., Seadawy, A.R., Yaşar, E.: Highly dispersive optical soliton molecules to dual-mode nonlinear Schrödinger wave equation in cubic law media. Opt. Quantum Electron. 54(3), 194 (2022)

    Google Scholar 

  • Losseva, T.V., Popel, S.I., Golub’, A.P.: Ion-acoustic solitons in dusty plasma. Plasma Phys. Rep. 38, 729–742 (2012)

    CAS  ADS  Google Scholar 

  • Mamun Miah, M., Shahadat Ali, H.M., Ali Akbar, M., Majid Wazwaz, A.: Some applications of the \((G^{\prime }/G,1/G)\)-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 132, 1–15 (2017)

    Google Scholar 

  • Muhamad, K.A., Tanriverdi, T., Mahmud, A.A., Baskonus, H.M.: Interaction characteristics of the Riemann wave propagation in the (2 + 1)-dimensional generalized breaking soliton system. Int. J. Comput. Math. 100(6), 1340–1355 (2023)

    MathSciNet  Google Scholar 

  • Ortigueira, M.D., Machado, J.T.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)

    MathSciNet  ADS  Google Scholar 

  • Qureshi, S., Chang, M.M., Shaikh, A.A.: Analysis of series RL and RC circuits with time-invariant source using truncated M, Atangana beta and conformable derivatives. J. Ocean Eng. Sci. 6(3), 217–227 (2021)

    Google Scholar 

  • Raza, N., Ur Rahman, R., Seadawy, A., Jhangeer, A.: Computational and bright soliton solutions and sensitivity behavior of Camassa–Holm and nonlinear Schrödinger dynamical equation. Int. J. Mod. Phys. B 35(11), 2150157 (2021)

    CAS  ADS  Google Scholar 

  • Romero, L.G., Luque, L.L., Dorrego, G.A., Cerutti, R.A.: On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci 8(1), 41–51 (2013)

    MathSciNet  Google Scholar 

  • Sadiya, U., Inc, M., Arefin, M.A., Uddin, M.H.: Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine–Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 16(1), 594–607 (2022)

    Google Scholar 

  • Sene, N.: Second-grade fluid model with Caputo–Liouville generalized fractional derivative. Chaos Solitons Fractals 133, 109631 (2020)

    MathSciNet  Google Scholar 

  • Shahen, N.H.M., Bashar, M.H., Ali, M.S.: Dynamical analysis of long-wave phenomena for the nonlinear conformable space-time fractional (2 + 1)-dimensional AKNS equation in water wave mechanics. Heliyon 6(10) (2020)

  • Shakeel, M., Bibi, A., AlQahtani, S.A., et al.: Dynamical study of a time fractional nonlinear Schrödinger model in optical fibers. Opt. Quantum Electron. 55, 1010 (2023a)

  • Shakeel, M., Bibi, A., Chou, D., Zafar, A.: Study of optical solitons for Kudryashov’s Quintuple power-law with dual form of nonlinearity using two modified techniques. Optik 273, 170364 (2023b)

  • Shakeel, M., Bibi, A., Zafar, A. et al.: Solitary wave solutions of Camassa–Holm and Degasperis–Procesi equations with Atangana’s conformable derivative. Comput. Appl. Math. (2023c)

  • Silambarasan, R., Nisar, K.S.: Doubly periodic solutions and non-topological solitons of \((2+ 1)\)-dimension Wazwaz Kaur Boussinesq equation employing Jacobi elliptic function method. Chaos Solitons Fractals 175, 113997 (2023)

    MathSciNet  Google Scholar 

  • Singh, R., Mishra, J., Gupta, V. K.: The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative. Int. J. Math. Comput. Eng. (2023)

  • Sousa, J.V.D.C., de Oliveira, E.C.: A new truncated \(M\)-fractional derivative type unifying some fractional derivative types with classical properties. arXiv preprint arXiv:1704.08187 (2017)

  • Sousa, J.V.D.C., De Oliveira, E.C.: On the \(\psi\)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    MathSciNet  ADS  Google Scholar 

  • Suret, P., Tikan, A., Bonnefoy, F., Copie, F., Ducrozet, G., Gelash, A., Randoux, S.: Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves. Phys. Rev. Lett. 125(26), 264101 (2020)

    CAS  PubMed  ADS  Google Scholar 

  • Taşcan, F., Bekir, A.: Analytic solutions of the (2 + 1)-dimensional nonlinear evolution equations using the sine–cosine method. Appl. Math. Comput. 215(8), 3134–3139 (2009)

    MathSciNet  Google Scholar 

  • Wazwaz, A.M.: The variational iteration method for solving linear and nonlinear Volterra integral and integro-differential equations. Int. J. Comput. Math. 87(5), 1131–1141 (2010)

    Google Scholar 

  • Wen-An, L., Hao, C., Guo-Cai, Z.: The \((\frac{w}{g})\)-expansion method and its application to Vakhnenko equation. Chin. Phys. B 18(2), 400 (2009)

    ADS  Google Scholar 

  • Yépez-Martínez, H., Rezazadeh, H.: New analytical solutions by the application of the modified double sub-equation method to the (1 + 1)-Schamel-KdV equation, the Gardner equation and the Burgers equation. Phys. Scr. 97(8), 085218 (2022)

    ADS  Google Scholar 

  • Yong, X., Gao, J., Zhang, Z.: Singularity analysis and explicit solutions of a new coupled nonlinear Schrödinger type equation. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2513–2518 (2011)

    MathSciNet  ADS  Google Scholar 

  • Yusuf, A., Inc, M., Aliyu, A.I., Baleanu, D.: Optical solitons possessing beta derivative of the Chen–Lee–Liu equation in optical fibers. Front. Phys. 7, 34 (2019)

    Google Scholar 

  • Zafar, A., Shakeel, M., Ali, A., Rezazadeh, H., Bekir, A.: Analytical study of complex Ginzburg–Landau equation arising in nonlinear optics. J. Nonlinear Opt. Phys. Mater. 32(01), 2350010 (2023)

    ADS  Google Scholar 

  • Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Analyzing numerous travelling wave behavior to the fractional-order nonlinear Phi-4 and Allen–Cahn equations throughout a novel technique. Results Phys. 37, 105486 (2022)

    Google Scholar 

  • Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Study of the soliton propagation of the fractional nonlinear type evolution equation through a novel technique. PLoS ONE 18(5), e0285178 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S.: A generalized new auxiliary equation method and its application to the (2 + 1)-dimensional breaking soliton equations. Appl. Math. Comput. 190(1), 510–516 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (NSFC) under Grant No. 72293574, the Natural Science Foundation of Hunan Province under Grant No. 2022JJ30677, the National Key Research and Development Program of China under Grant No. 2022YFC3303303.

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are contributed equally.

Corresponding author

Correspondence to Muhammad Shakeel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saboor, A., Shakeel, M., Liu, X. et al. A comparative study of two fractional nonlinear optical model via modified \(\left( \frac{G^{\prime }}{G^2}\right)\)-expansion method. Opt Quant Electron 56, 259 (2024). https://doi.org/10.1007/s11082-023-05824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05824-3

Keywords

Mathematics Subject Classification

Navigation