Skip to main content
Log in

Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with \(\beta \)-derivative in optical fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The main goal of the current work is to study dynamical behavior and dispersive optical solitons for the fractional Ginzburg–Landau equation in optical fibers. Starting with the traveling wave transformations, the fractional Ginzburg–Landau model is converted into an equivalent ordinary differential traveling wave system. Then, the Hamiltonian function and orbits phase portraits of this system are found. Here, we derived explicit fractional periodic wave solutions, bell-shaped solitary wave solutions and kink-shaped solitary wave solutions through the bifurcation theory of differential dynamical system. In addition to, some other traveling wave solutions are obtained by using the polynomial complete discriminant method and symbolic computation. Most notably, we give the classification of all single traveling wave solutions of fractional Ginzburg–Landau equation at the same time. The obtained optical soliton solutions in this work may substantially improve or complement the corresponding results in the known references. Finally, we give the comparison between our solutions and other’s results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Abdon, A., Dumitru, B., Ahmed, A.: Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys. 14, 145–149 (2016)

    Google Scholar 

  • Akram, G., Sarfraz, M.: Multiple optical soliton solutions for CGL equation with Kerr law nonlinearity via extended modified auxiliary equation mapping method. Optik 242, 167258 (2021)

    ADS  Google Scholar 

  • Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg-Landau equation using different fractional differential operators. Optik 256, 168626 (2022)

    ADS  Google Scholar 

  • Alquran, M.: Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrödinger equations. Opt. Quant. Electron. 53, 588 (2021)

    Google Scholar 

  • Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering. Partial Differ. Equ. Appl. Math. 7, 100506 (2023a)

    Google Scholar 

  • Alquran, M.: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional time-delay. Rom. J. Phys. 68, 106 (2023b)

    Google Scholar 

  • Alquran, M., Jaradat, I.: Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2 + 1)-Dimensional Nizhnik-Novikov-Veselov equation. Mathematics 11, 861 (2023)

    Google Scholar 

  • Aranson, I.S., Kramer, L.: The world of the complex Ginzburg-Landau equation. Rev. Modern Phys. 74, 99 (2002)

    MathSciNet  ADS  Google Scholar 

  • Biswas, A.: Optical soliton cooling with polynomial law of nonlinear refractive index. J. Opt. 49, 580–583 (2020)

    Google Scholar 

  • Biswas, A., Alqahtani, R.T.: Optical soliton perturbation with complex Ginzburg–Landau equation by semi-inverse variational principle. Optik 147, 77–81 (2017)

    ADS  Google Scholar 

  • Biswas, A., Sonmezoglu, A., Ekici, M., et al.: Optical solitons perturbation with Kudryashov’s equation by F-expansion. Optik 199, 163338 (2019)

    ADS  Google Scholar 

  • Biswas, A., Asma, M., Guggilla, P., et al.: Optical solitons with Kudryashov’s equation by Semi-inverse variational principle. Phys. Lett. A 384, 126830 (2020)

    MathSciNet  CAS  Google Scholar 

  • Bo, W.B., Wang, R.R., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractIonal Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111, 1577–1588 (2023)

    Google Scholar 

  • Chen, Y.X., Xiao, X.: Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials. Nonlinear Dyn. 109, 2003–2012 (2022)

    Google Scholar 

  • Chen, C., Jiang, Y.L., Wang, Z.L., et al.: Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity. Optik 222, 165331 (2020)

    ADS  Google Scholar 

  • Corlay, S., Lebovits, J., Vhel, J.L.: Multifractional stochastic volatility models. Math. Finance 24, 364–402 (2014)

    MathSciNet  Google Scholar 

  • Cresson, J., Szafranska, A.: Comments on various extensions of the RiemannCLiouville fractional derivatives : about the Leibniz and chain rule properties. Commun. Nonlinear Sci. Numer. Simul. 82, 104903 (2020)

    MathSciNet  Google Scholar 

  • Das, A., Biswas, A., Ekici, M., et al.: Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion. Chinese J. Phys. 61, 255–261 (2019)

    MathSciNet  ADS  Google Scholar 

  • Esen, A., Sulaiman, T.A., et al.: Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation. Optik 167, 150–156 (2018)

    ADS  Google Scholar 

  • Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  Google Scholar 

  • Fang, Y., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Google Scholar 

  • Geng, K.L., Zhu, B.W., Cao, Q.H., et al.: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 111, 16483–16496 (2023a)

    Google Scholar 

  • Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn. 111, 603–617 (2023b)

    Google Scholar 

  • Graef, J.R., Tinc, C., et al.: Razumikhin qualitative analysis of Volterr integro-fractional delay differential equation with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 103, 106037 (2021)

    Google Scholar 

  • Hammad, M.A., Khalil, R.: Conformable fractional heat differential equation. Int. J. Pure Appl. Math. 94, 215–221 (2014)

    Google Scholar 

  • Han, T.Y., Li, Z., Zhang, X.: Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrödinger equation. Phys. Lett. A 395, 127217 (2021)

    CAS  Google Scholar 

  • Hosseini, K., Salahshour, S., Mirzazadeh, M.: The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 1–9 (2021)

    Google Scholar 

  • Jaradat, I., Alquran, M.: Construction of solitary two-wave solutions for a new two-mode version of the Zakharov–Kuznetsov equation. Mathematics 8, 1127 (2020)

    Google Scholar 

  • Khalil, R., Horani, A., Yousef, A., et al.: A new definition of fractional derivative. J. Comp. Appl. Math. 264, 65–70 (2014)

    MathSciNet  Google Scholar 

  • Khan, Y., Wu, Q.B., Faraz, N., et al.: A new fractional analytical approach via a modified Riemann-Liouville derivative. Appl. Math. Lett. 25, 1340–1346 (2012)

    MathSciNet  Google Scholar 

  • Kucche, K.D., Sutar, S.T.: Analysis of nonlinear fractional differential equations involving Atangana–Baleanu-Caputo derivative. Chaos Solitons Fractals 143, 110556 (2021)

    MathSciNet  Google Scholar 

  • Li, J.B.: Singular nonlinear traveling wave equations: bifurcation and exact solutions. Science Press, Beijing (2013)

    Google Scholar 

  • Li, J.B., Dai, H.H.: On the study of singular nonlinear traveling wave equations: dynamical system approach. Science Press, Beijing (2007)

    Google Scholar 

  • Li, L.F., Xie, Y.Y., Zhu, S.H.: New exact solutions for a generalized KDV equation. Nonlinear Dyn. 92, 215–219 (2018)

    Google Scholar 

  • Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    MathSciNet  Google Scholar 

  • Malomed, B.A.: New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg-Landau equations. Phys. Lett. A 422, 127802 (2022)

    MathSciNet  CAS  Google Scholar 

  • Ortigueira, M.D.: Comments on Modeling fractional stochastic systems as non-random fractional dynamics driven Brownian motions. Appl. Math. Model. 33, 2534–2537 (2009)

    MathSciNet  Google Scholar 

  • Ouahid, L., Owyed, S., Abdou, M.A., Alshehri, N.A., et al.: New optical soliton solutions via generalized Kudryashov’s scheme for Ginzburg-Landau equation in fractal order. Alex. Eng. J. 60, 5495–5510 (2021)

    Google Scholar 

  • Rosa, C., de Oliveira, E.C.: Relaxation equations: fractional models. J. Phys. Math. 6, 1–7 (2015)

    Google Scholar 

  • Scott, A.C.: Encyclopedia of Nonlinear Science. Routledge, New York (2005)

    Google Scholar 

  • Tang, L.: Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Res. Phys. 18, 103289 (2020)

    Google Scholar 

  • Tang, L.: Dynamical behavior and traveling wave solutions in optical fibers with Schrödinger-Hirota equation. Optik 245, 167750 (2021)

    ADS  Google Scholar 

  • Tang, L.: Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. J. Opt. 52, 581–592 (2022)

    Google Scholar 

  • Tang, L.: Bifurcations and multiple optical solitons for the dual-mode nonlinear Schrödinger equation with Kerr law nonlinearity. Optik 265, 169555 (2022)

    CAS  ADS  Google Scholar 

  • Tang, L.: Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation. Chaos Solitons Fractals 161, 112383 (2022)

    Google Scholar 

  • Tang, L.: Bifurcations and dispersive optical solitons for the nonlinear Schrödinger-Hirota equation in DWDM networks. Optik 262, 169276 (2022)

    ADS  Google Scholar 

  • Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)

    ADS  Google Scholar 

  • Tang, L., Chen, S.P.: The classification of single traveling wave solutions for the fractional coupled nonlinear Schrödinger equation. Opt. Quant. Electron. 54, 105 (2022)

    CAS  Google Scholar 

  • Tang, L., Biswas, A., Yildirim, Y., Alghamdi, A.A.: Bifurcation analysis and optical solitons for the concatenation model. Phys. Lett. A 480, 128943 (2023)

    MathSciNet  CAS  Google Scholar 

  • Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18, 2945–2948 (2013)

    MathSciNet  ADS  Google Scholar 

  • Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Technol. 152, 108103 (2022)

    CAS  Google Scholar 

  • Weitzner, H., Zaslavsky, G.M.: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 8, 273–281 (2003)

    MathSciNet  ADS  Google Scholar 

  • Wen, K.X., Jiang, J.H., Dai, C.Q.: Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn. 111, 13343–13355 (2023)

    Google Scholar 

  • Xie, Y.Y., Yang, Z.Y., Li, L.F.: New exact solutions to the high dispersive cubic-quintic nonlinear Schrödinger equation. Phys. Lett. A 382, 2506–2514 (2018)

    MathSciNet  CAS  ADS  Google Scholar 

  • Xie, Y.Y., Li, L.F., Kang, Y.: New solitons and comditional stability to the high dispersive nonlinear Schrödinger equation with parabolic law noninearity. Nonlinear Dyn. 103, 1011–1021 (2021)

    Google Scholar 

  • Yang, L., Hou, X.Y., Zeng, Z.B.: Compete discrimation system for polynomial. Sci. China Ser. E. 26, 628–646 (1996)

    Google Scholar 

  • Yepez-Martnez, H., Gomez-Aguilar, J.F., Dumitru, B.: Beta-derivative and subequation method applied to the optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Optik 155, 357–365 (2018)

    ADS  Google Scholar 

  • Zhou, J.R., Zhou, R., Zhu, S.H.: Peakon, rational function and periodic solutions for Tzitzeica-Dodd-Bullough type equations. Chaos Solitons Fractals 141, 110419 (2020)

    MathSciNet  Google Scholar 

  • Zhou, Q., Triki, H., Xu, J.K., et al.: Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fractals 160, 112198 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20115134110001.

Author information

Authors and Affiliations

Authors

Contributions

LT Writing-original draft, conceptualization, methodology, writing-review and editing.

Corresponding author

Correspondence to Lu Tang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L. Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with \(\beta \)-derivative in optical fibers. Opt Quant Electron 56, 175 (2024). https://doi.org/10.1007/s11082-023-05761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05761-1

Keywords

Navigation