Skip to main content
Log in

Machine learning-based inverse design of raised cosine few mode fiber for low coupling

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In mode division multiplexing techniques, few-mode fiber (FMF) with multiple modes and low coupling is the demanded design. The design of FMF become more complex due to different parameters and shape design of it profile especially when you need to get a design with high number of modes, and it will consume a lot of computing time. Therefore this paper propose a machine learning technique employ neural network to design FMF raised cosine profile inversely. We realize the inverted design of raised cosine with U refractive index layer FMFs for supporting 6 mode operation, by adopting the minimal index difference between neighboring modes to get low coupling between modes. This proposed strategy gives higher precision with less complex design of FMF, in addition to low coupling between propagating modes. This promoting method can be applied in other types of fiber optic profile which it need a lot of parameters optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Behera, B., Varshney, S.K., Mohanty, M.N.: Design of ultra-dispersion flattened M-type few-mode fiber for weakly-coupled mode division multiplexing transmission. Optik 260, 169040 (2022)

    Article  ADS  Google Scholar 

  • Behera, B., Patra, G.R., Varshney, S.K., Mohanty, M.N.: Machine learning-based inverse model for few-mode fiber designs. Comput. Syst. Sci. Eng. 45(1), 311–328 (2023)

    Article  Google Scholar 

  • Cakiroglu, C., Aydın, Y., Bekdaş, G., Geem, Z.W.: Interpretable predictive modelling of basalt fiber reinforced concrete splitting tensile strength using ensemble machine learning methods and SHAP approach. Materials 16(13), 4578 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chang, J.H., Corsi, A., Rusch, L.A., LaRochelle, S.: Design analysis of OAM fibers using particle swarm optimization algorithm. J. Lightwave Technol. 38(4), 846–856 (2019)

    Article  ADS  Google Scholar 

  • Chebaane, S., Seleem, H., Fathallah, H. and Machhout, M.: Design tradeoffs of few-mode step index fiber for next generation mode division multiplexing optical networks. In 2015 International Conference on Information and Communication Technology Research (ICTRC), pp. 262–265. IEEE (2015)

  • Chebaane, S., Fathallah, H., Seleem, H., Machhout, M.: Proposed raised cosine FMF for dispersion management in next-generation optical networks. IEEE Photonics J. 8(1), 1–12 (2016)

    Article  Google Scholar 

  • Chebaane, S., Fathallah, H., Seleem, H., Machhout, M.: Trenched raised cosine FMF for differential mode delay management in next generation optical networks. Opt. Commun. 408, 15–20 (2018)

    Article  CAS  ADS  Google Scholar 

  • Chebaane, S., Ben Khalifa, S., Benabdallah, F., Mohamad, M., Hedhili, F., Al-Shomar, S.M.: Multilayers method for designing the W-shape raised cosine few-mode fibers. J. Opt. 51, 1–7 (2022)

    Article  Google Scholar 

  • Grüner-Nielsen, L., Mathew, N.M., Rottwitt, K.: Characterization of few mode fibers and devices. Opt. Fiber Technol. 52, 101972 (2019)

    Article  Google Scholar 

  • Jiang, S., Ma, L., Zhang, Z., Xu, X., Wang, S., Du, J., Yang, C., Tong, W., He, Z.: Design and characterization of ring-assisted few-mode fibers for weakly coupled mode- division multiplexing transmission. J. Lightwave Technol. 36(23), 5547–5555 (2018)

    Article  CAS  ADS  Google Scholar 

  • Mitu, S.A., Abdulrazak, L.F., Ahmed, K., Trabelsi, Y., alZahrani, F.A., Rajan, M.M.: Numerical investigation of elliptical core few-mode fiber for next generation data transmission. Int. J. Commun. Syst. 35(16), e5305 (2022)

    Article  Google Scholar 

  • Mo, S., Zhu, H., Liu, J., Liu, J., Zhang, J., Shen, L., Wang, X., Wang, D., Li, Z., Yu, S.: Few-mode optical fiber with a simple double-layer core supporting the O+ C+ L band weakly coupled mode-division multiplexing transmission. Opt. Express 31(2), 2467–2479 (2023)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rjeb, A., Guerra, G., Issa, K., Fathallah, H., Chebaane, S., Machhout, M., Palmieri, L., Galtarossa, A.: Inverse-raised-cosine fibers for next-generation orbital angular momentum systems. Opt. Commun. 458, 124736 (2020)

    Article  CAS  Google Scholar 

  • Shakthi Murugan, K.H., Sharma, A., Malhotra, J.: Performance analysis of 80 Gbps Ro-FSO system by incorporating hybrid WDM-MDM scheme. Opt. Quantum Electron 52, 1–12 (2020)

    Article  Google Scholar 

  • Sharma, A., Malhotra, J., Chaudhary, S., Thappa, V.: Analysis of 2× 10 Gbps MDM enabled inter satellite optical wireless communication under the impact of pointing errors. Optik 227, 165250 (2021)

    Article  ADS  Google Scholar 

  • Shi, Q., Yang, Y., Sun, Z., Lee, C.: Progress of advanced devices and internet of things systems as enabling technologies for smart homes and health care. ACS Mater. Au 2(4), 394–435 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillard, P., Benyahya, K., Soma, D., Labroille, G., Jian, P., Igarashi, K., Ryf, R., Fontaine, N.K., Rademacher, G., Shibahara, K.: Few-mode fiber technology, deployments, and systems. Proc. IEEE 110(11), 1804–1820 (2022)

    Article  Google Scholar 

  • Xie, Y., Pei, L., Zheng, J., Ning, T., Li, J., Ai, B., He, R.: Design and characterization of nanopore-assisted weakly-coupled few-mode fiber for simpler MIMO space division multiplexing. IEEE Access 8, 76173–76181 (2020)

    Article  Google Scholar 

  • Zhang, J., Wang, G., Zhang, H., Wang, F., Yan, X., Zhang, X., Li, S., Cheng, T.: A weakly-coupled few-mode optical fiber with a graded concave high-index-ring. IEEE Photonics J. 13(2), 1–10 (2021a)

    Google Scholar 

  • Zhang, C., Liang, P., Nebhen, J., Chaudhary, S., Sharma, A., Malhotra, J., Sharma, B.: Performance analysis of mode division multiplexing-based free space optical systems for healthcare infrastructure’s. Opt. Quantum Electron. 53, 1–14 (2021b)

    Article  Google Scholar 

  • Zhang, F., Liu, Z., Du, H., Shao, Y., Shen, L., Yang, L., Yan, C., Zhao, Z., Tang, M.: Genetic algorithm assisted bridge fiber design and fabrication for few-mode multi-core fiber Fan-in/Fan-out device. Opt. Express 30(11), 19042–19054 (2022)

    Article  PubMed  ADS  Google Scholar 

  • Zhao, Q., Pei, L., Tang, J., Wang, J., Zheng, J., Li, J., Ning, T.: Design of few-mode erbium-doped fiber with a low differential modal gain and weak coupling based on layered doping. Appl. Opt. 62(6), 1567–1574 (2023)

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zuo, M., Ge, D., Liu, J., Gao, Y., Shen, L., Lan, X., Chen, Z., He, Y., Li, J.: Long-haul intermodal-MIMO-free MDM transmission based on a weakly coupled multiple-ring-core few-mode fiber. Opt. Express 30(4), 5868–5878 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il – Saudi Arabia through project number RG-23 053.

Funding

Scientific Research Deanship at University of Ha’il – Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Authors' contributions - SC: Performed the analysis; Wrote the paper. -SBK: Conceived and designed the analysis, Wrote the paper. -MJ:Collected the data, Performed the analysis. -AL: Collected the data, analysis tools. - HB: Collected the data - AD: Performed the analysis

Corresponding author

Correspondence to Saleh Chebaane.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebaane, S., Ben Khalifa, S., Jebali, M. et al. Machine learning-based inverse design of raised cosine few mode fiber for low coupling. Opt Quant Electron 56, 56 (2024). https://doi.org/10.1007/s11082-023-05695-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05695-8

Keywords

Navigation