Skip to main content
Log in

Bell state-based semi-quantum signature scheme with arbitrator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

A Correction to this article was published on 18 January 2024

This article has been updated

Abstract

Semi-quantum signature is an important research topic in quantum cryptography. Based on the Bell states, a semi-quantum signature scheme with arbitrator is proposed. In our scheme, the quantum signer signs the message by encoding the ciphtext with the Bell states and performing the controlled NOT gate on the particles, while the signature receiver and arbitrator corporately verify the signature by measuring the received qubits with Z-basis. Compared with the similar schemes, ours has the better performances as follows. (1) It can be proved to be information-theoretically secure. It has the strong undeniability property. (2) The signer is a quantum partner, while both the signature receiver and the arbitrator are classical partners. (3) The signer needn’t share any private key with the receiver. (4) The scheme is based on Bell state, which is relatively easier to be prepared than the other entanglement resources used in the similar schemes. (5) It has better qubit efficiency. Therefore, our scheme has better performances in security, practicability and efficiency than the similar schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

My manuscript has no associated data.

Change history

References

  • Amiri, R., Wallden, P., Kent, A., et al.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)

    ADS  Google Scholar 

  • Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    MathSciNet  Google Scholar 

  • Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    MathSciNet  PubMed  ADS  Google Scholar 

  • Boyer, M., Katz, M., Liss, R., et al.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96(6), 062335 (2017)

    ADS  Google Scholar 

  • Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    CAS  PubMed  ADS  Google Scholar 

  • Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advance in Cryptology-CRYPTO’82, pp. 199–203. Springer, Boston (1983)

    Google Scholar 

  • Chaum, D., Heyst, E.: Group signatures. In: Davies, D.W. (ed.) Advance in Cryptology- EUROCRYPT’91, pp. 257–265. Springer, Berlin (1991)

    Google Scholar 

  • Chen, B., Yan, L.: Quantum and semi-quantum blind signature schemes based on entanglement swapping. Int. J. Theor. Phys. 60, 4006–4014 (2021)

    MathSciNet  ADS  Google Scholar 

  • Chen, F.L., Zhang, L.H., Zhang, H.: Controlled SWAP attack and improved quantum encryption of arbitrated quantum signature schemes. Quantum Inf. Process. 18, 140 (2019)

    MathSciNet  ADS  Google Scholar 

  • Chen, L.Y., Liao, Q., Tan, R.C., et al.: Offline arbitrated semi-quantum signature scheme with four-particle cluster state. Int. J. Theor. Phys. 59(12), 3685–3695 (2020)

    MathSciNet  Google Scholar 

  • Chen, J.J., You, F.C., Li, Z.Z.: Quantum multi-proxy blind signature based on cluster state. Quantum Inf. Process. 21(3), 104 (2022)

    MathSciNet  ADS  Google Scholar 

  • Diffie, W., Hellman, M.E.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    MathSciNet  Google Scholar 

  • Ding, L., Xin, X., Yang, Q., et al.: Security analysis and improvements of XOR arbitrated quantum signature-based GHZ state. Mod. Phys. Lett. A 37(2), 2250008 (2022)

    MathSciNet  ADS  Google Scholar 

  • Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)

    PubMed  ADS  Google Scholar 

  • Fan, T.T., Lu, D.J., You, M.G., et al.: Multi-proxy signature scheme using five-qubit entangled state based on controlled quantum teleportation. Int. J. Theor. Phys. 61(12), 273 (2022)

    MathSciNet  Google Scholar 

  • Feng, Y., Shi, R., Shi, J., et al.: Arbitrated quantum signature scheme with quantum walk-based teleportation. Quantum Inf. Process. 18, 154 (2019)

    MathSciNet  ADS  Google Scholar 

  • Feng, Y., Shi, R., Shi, J., et al.: Arbitrated quantum signature protocol with boson sampling-based random unitary encryption. J. Phys. a: Math. Theor. 53(13), 135301 (2020a)

    MathSciNet  CAS  ADS  Google Scholar 

  • Feng, Y., Zhang, Q., Shi, J., et al.: Quantum proxy signature scheme with discrete time quantum walks and quantum one-time pad CNOT operation. Appl. Sci. Basel 10(17), 5770 (2020b)

    CAS  Google Scholar 

  • Feng, Y., Zhou, J., Li, J., et al.: SKC-CCCO: an encryption algorithm for quantum group signature. Quantum Inf. Process. 21, 328 (2022)

    MathSciNet  ADS  Google Scholar 

  • Gao, M., Yang, W., Liu, Y.: A novel quantum (t, n) threshold group signature based on d-dimensional quantum system. Quantum Inf. Process. 20, 1 (2021)

    MathSciNet  Google Scholar 

  • Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: quant-ph/0105032 (2001)

  • Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    CAS  ADS  Google Scholar 

  • Huang, Y., Su, Z., Zhang, F., Ding, Y.: Quantum algorithm for solving hyperelliptic curve discrete logarithm problem. Quantum Inf. Process. 19(62), 1–17 (2020)

    MathSciNet  ADS  Google Scholar 

  • Li, W., Shi, R., Huang, D., et al.: Quantum blind dual-signature scheme without arbitrator. Phys. Scr. 91, 035101 (2016)

    ADS  Google Scholar 

  • Lu, D.J., Li, Z.H., Yu, J., et al.: A verifiable arbitrated quantum signature scheme based on controlled quantum Tteleportation. Entropy 24(1), 111 (2022)

    PubMed  PubMed Central  ADS  Google Scholar 

  • Luo, Q.M., Zhang, T.G., Huang, X.F.: Two quantum proxy blind signature schemes based on controlled quantum teleportation. Entropy 24(10), 1421 (2022)

    MathSciNet  PubMed  PubMed Central  ADS  Google Scholar 

  • Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: delegation of the power to sign messages. IEICE Trans. Fundamentals E79-A(5), 1338–1354 (1996)

    Google Scholar 

  • Qin, H., Tang, W.K., Tso, R.: Quantum (t, n) threshold group signature based on bell state. Quantum Inf. Process. 19, 1 (2020)

    MathSciNet  CAS  ADS  Google Scholar 

  • Rastegari, P., Berenjkoub, M., Dakhilalian, M., et al.: Universal designated verifier signature scheme with non-delegatability in the standard model. Inform. Sci. 479, 321–334 (2019a)

    MathSciNet  Google Scholar 

  • Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–665 (2019b)

    Google Scholar 

  • Rong, M.X., Xin, X.J., Li, F.G.: Quantum signature for designated verifier with strong security. Acta Physica Sinica 69, 190302 (2020)

    Google Scholar 

  • Schrödinger, E., Born, M.: Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc. 31, 555 (1935)

    ADS  Google Scholar 

  • Shannon, C.E.: Communication theory of secret system. Bell Syst. Tech. J. 28, 653–715 (1949)

    Google Scholar 

  • Shi, W.M., Zhou, Y.H., Yang, Y.G.: A real quantum designated verifier signature scheme. Int. J. Theor. Phys. 54, 3115–3123 (2015)

    MathSciNet  Google Scholar 

  • Shi, W.M., Wang, Y.M., Zhou, Y.H., et al.: A scheme on converting quantum signature with public verifiability into quantum designated verifier signature. Optik 164, 753–759 (2018)

    ADS  Google Scholar 

  • Shor, P. W.: Algorithms for quantum computation: discrete logarithm and factoring. in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Society Press, 124–134 (1994)

  • Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    MathSciNet  Google Scholar 

  • Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91(4), 042304 (2014)

    ADS  Google Scholar 

  • Wang, Z., Li, J., Chen, X.B., et al.: Quantum multi-proxy strong blind signature based on block blind coding. Quantum Inf. Process. 21(12), 386 (2022)

    MathSciNet  ADS  Google Scholar 

  • Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation. Phys. Scr. 81, 055001 (2010)

    ADS  Google Scholar 

  • Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  • Xia, C., Li, H., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. Eur. Phys. J. plus 136, 633 (2021)

    Google Scholar 

  • Xia, C.Y., Li, H.F., Hu, J.: Semi-quantum digital signature protocol based on Einstein–Podolsky–Rosen steering. J. Phys. A-Math. Theor. 55(32), 325302 (2022)

    MathSciNet  ADS  Google Scholar 

  • Xin, X., Yang, Q., Li, F.: Quantum proxy signature with provable security. Mod. Phys. Lett. A 35(24), 2050197 (2020a)

    MathSciNet  ADS  Google Scholar 

  • Xin, X., Wang, Z., Yang, Q., Li, F.: Quantum designated verifier signature based on Bell states. Quantum Inf. Process. 19(79), 53 (2020b)

    MathSciNet  ADS  Google Scholar 

  • Xin, X., Wang, Z., Yang, Q., et al.: Quantum designated verifier signature based on Bell states. Quant. Inf. Process. 19, 79 (2020c)

    MathSciNet  ADS  Google Scholar 

  • Xin, X., Wang, Z., Yang, Q., et al.: Identity-based quantum designated verifier signature. Int. J. Theor. Phys. 59, 918–929 (2020d)

    MathSciNet  CAS  Google Scholar 

  • Xin, X., Ding, L., Yang, Q., et al.: Efficient chain-encryption-based quantum signature scheme with semi-trusted arbitrator. Quantum Inf. Process. 21(7), 246 (2022)

    MathSciNet  ADS  Google Scholar 

  • Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)

    Google Scholar 

  • Yang, C.W., Lin, J., Tsai, C.W., et al.: Cryptanalysis of a semi-quantum bi-signature scheme based on W states. Entropy 24(10), 1048 (2022)

    MathSciNet  ADS  Google Scholar 

  • Yu, J., Zhang, J.H.: Quantum (t, n) threshold proxy blind signature scheme based on Bell States. Int. J. Theor. Phys. 61(7), 207 (2022)

    MathSciNet  Google Scholar 

  • Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    ADS  Google Scholar 

  • Zhang, M.L., Liu, Y.H., Nie, M., et al.: Arbitrated quantum signature of quantum messages with a semi-honest arbitrator. Int. J. Theor. Phys. 57, 1310–1318 (2018)

    MathSciNet  Google Scholar 

  • Zhao, X.Q., Chen, H.Y., Wang, Y.Q., et al.: Semi-quantum bi-signature scheme based on W states. Int. J. Theor. Phys. 58(10), 3239–3251 (2019)

    MathSciNet  Google Scholar 

  • Zheng, T., Chang, Y., Yan, L.L., et al.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59(10), 3145–3155 (2020)

    MathSciNet  ADS  Google Scholar 

  • Zheng, M., Xue, K., Li, S., et al.: A practical quantum designated verifier signature scheme for e-voting applications. Quant. Inf. Process. 20, 230 (2021)

    MathSciNet  ADS  Google Scholar 

  • Zou, X., Qiu, D., Li, L., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 62272090) and the Key Scientific Research Project of Colleges and Universities in Henan Province (Grant No. 22A413010).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The scheme was designed and analyzed by TZ and XX. The security comparisons were presented by TZ and CL, and the efficiency comparisons were presented by TZ, BJ and FL. The manuscript was written by TZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangjun Xin.

Ethics declarations

Conflicts of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The copyright holder for this article was incorrectly given.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xin, X., Jiang, B. et al. Bell state-based semi-quantum signature scheme with arbitrator. Opt Quant Electron 56, 131 (2024). https://doi.org/10.1007/s11082-023-05693-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05693-w

Keywords

Navigation