Skip to main content
Log in

Tunable electromagnetically induced transparency metamaterial utilizing bright-dark mode coupling between electric and toroidal resonances

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We investigated an electromagnetically induced transparency metamaterial and provided a comprehensive demonstration of its tunable electromagnetic characteristics in the terahertz region. Within a unit cell, a pair of horizontally aligned metal wires induces electric resonance, functioning as bright mode resonators. Additionally, a hybrid structure composed of metal and vanadium dioxide is employed to generate toroidal resonance, serving as dark mode resonators. Analysis of the scattered power reveals an enhancement of the energy associated with toroidal resonance within the transparent window. Simulation results illustrate a gradual reduction in the coupling strength of the electromagnetically induced transparency effect, and the transparency peak shifts toward the lower frequency range with decreasing conductivity of vanadium dioxide. Ultimately, the electromagnetically induced transparency phenomenon dissipates, resulting in a transmission spectrum characterized by a resonance curve. Theoretical analysis based on a two-coupled oscillator model unveils that the tunable effect of the electromagnetically induced transparency metamaterial is attributed to the modulation of damping rate and intrinsic resonant frequency of the dark mode resonator, achieved through adjustments in the conductivity of vanadium dioxide. This proposed approach holds promise for enhancing electromagnetically induced transparency implementations and expanding the application domains of toroidal metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  • Boller, K.J., Imamoğlu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66(20), 2593–2596 (1991)

    CAS  PubMed  ADS  Google Scholar 

  • Cai, W., Fan, Y., Huang, X., Fu, Q., Yang, R., Zhu, W., Zhang, F.: Electromagnetically induced transparency in all-dielectric metamaterials: coupling between magnetic Mie resonance and substrate resonance. Phys. Rev. A 100(5), 053804 (2019)

    CAS  ADS  Google Scholar 

  • Chen, M.M., Yang, X.X.: Tunable and three-dimensional dual-band metamaterial absorber based on electromagnetically induced transparency with vanadium dioxide. Phys. Chem. Chem. Phys. 25(23), 13393–13398 (2023)

    CAS  PubMed  Google Scholar 

  • Chen, H.T., Yang, H., Singh, R., O’Hara, J.F., Azad, A.K., Trugman, S.A., Jia, Q.X., Taylor, A.J.: Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105(24), 247402 (2010)

    PubMed  ADS  Google Scholar 

  • Chen, M., Xiao, Z., Lv, F., Cui, Z., Xu, Q.: Dynamically tunable dual-band electromagnetically induced transparency-like in terahertz metamaterial. Opt. Mater. 107, 110060 (2020)

    CAS  Google Scholar 

  • Chen, M.M., Yang, X.X., Gao, S.: Tunable electromagnetically induced transparency in a metal-perovskite hybrid metamaterial and its sensing performance. IEEE Sens. J. 23, 4802–4808 (2023)

    ADS  Google Scholar 

  • Engheta, N.: Antenna-guided light. Science 334(6054), 317–318 (2011)

    CAS  PubMed  ADS  Google Scholar 

  • Gao, E.D., Li, H.J., Liu, Z.M., Xiong, C.X., Liu, C., BX Ruan: Terahertz multifunction switch and optical storage based on triple plasmon-induced transparency on a single-layer patterned graphene metasurface. Opt. Express 28(26), 40013–23 (2020)

    CAS  PubMed  ADS  Google Scholar 

  • Gao, F., Yuan, P.C., Ma, H.F., Xu, T., Zhu, J.W., Li, K.X., Yang, F., Yan, B.: Tunable chiral-selective electromagnetically induced transparency-like effect in VO2-based metamaterial for slow light applications. EPL 132(1), 15001 (2020b)

    CAS  ADS  Google Scholar 

  • Guo, B., Wan, D., Ishaq, A., Luo, H., Gao, Y.: Direct synthesis of high-performance thermal sensitive VO2(B) thin film by chemical vapor deposition for using in uncooled infrared detectors. J. Alloys Compd. 715, 129–136 (2017)

    CAS  Google Scholar 

  • Ham, B.S., Hemmer, P.R., Shahriar, M.S.: Efficient electromagnetically induced transparency in a rare-earth doped crystal. Opt. Commun. 144(4), 227–230 (1997)

    CAS  ADS  Google Scholar 

  • Han, B., Li, X., Sui, C., Diao, J., Jing, X., Hong, Z.: Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response. Opt. Mater. Express 8(8), 2197–2207 (2018)

    CAS  ADS  Google Scholar 

  • Hau, L.V., Harris, S.E., Dutton, Z.: Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999)

    CAS  ADS  Google Scholar 

  • Hinamoto, T., Fujii, M.: MENP: an open-source MATLAB implementation of multipole expansion for nanophotonics. OSA Continuum 4, 1640–1648 (2021)

    CAS  Google Scholar 

  • Jepsen, P.U., Fischer, B.M., Thoman, A., Helm, H., Suh, J.Y., Lopez, R., Haglund, R.F., Jr.: Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys. Rev. B 74(20), 205103 (2006)

    ADS  Google Scholar 

  • Jiang, X., Chen, D., Zhang, Z.: Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface. Opt. Express 28(23), 34079–34092 (2020)

    CAS  PubMed  ADS  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    CAS  PubMed  ADS  Google Scholar 

  • Li, H., Liu, S.: Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance. Appl. Phys. Lett. 13, 133514 (2014)

    ADS  Google Scholar 

  • Li, J., Yu, P., Cheng, H.: Optical polarization encoding using graphene-loaded plasmonic metasurfaces. Adv. Opt. Mater. 4, 91–98 (2016)

    CAS  Google Scholar 

  • Liu, G.D., Zhai, X., Xia, S.X., Lin, Q., Zhao, C.J., Wang, L.L.: Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface. Opt. Express 25, 26045 (2017)

    CAS  PubMed  ADS  Google Scholar 

  • Luo, C., Ibanescu, M., Johnson, S.G.: Cerenkov radiation in photonic crystals. Science 299(5605), 368–371 (2003)

    CAS  PubMed  ADS  Google Scholar 

  • Ma, J., Wang, Z.H., Liu, H., Fan, Y.X., Tao, Z.Y.: Active switching of extremely high-Q fano resonances using vanadium oxide-implanted terahertz metamaterials. Appl. Sci. 10(1), 330 (2020)

    CAS  Google Scholar 

  • Marcinkevicius, S., Gushterov, A., Reithmaier, J.P.: Transient electromagnetically induced transparency in self-assembled quantum dots. Appl. Phys. Lett. 92(4), 041113 (2008)

    ADS  Google Scholar 

  • Meng, F.Y., Wu, Q., Erni, D., Wu, K., Lee, J.C.: Polarization independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012)

    ADS  Google Scholar 

  • Pan, G.M., Shu, F.Z., Wang, L., Shi, L.P., Evlyukhin, A.B.: Plasmonic anapole states of active metamolecules. Photon. Res. 9, 822–828 (2021)

    Google Scholar 

  • Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    CAS  PubMed  ADS  Google Scholar 

  • Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.D.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(4), 783 (2001)

    CAS  PubMed  ADS  Google Scholar 

  • Saadabad, R.M., Huang, L.J., Evlyukhin, A.B., Miroshnichenko, A.E.: Multifaceted anapole: from physics to applications. Opt. Mater. Express 12(5), 1817–1837 (2022)

    CAS  ADS  Google Scholar 

  • Seddon, N., Bearpark, T.: Observation of the inverse doppler effect. Science 302(5650), 1537–1540 (2003)

    CAS  PubMed  ADS  Google Scholar 

  • Serapiglia, G.B., Paspalakis, E., Sirtori, C.: Laser-induced quantum coherence in a semiconductor quantum well. Phys. Rev. Lett. 84(5), 1019–1022 (2000)

    CAS  PubMed  ADS  Google Scholar 

  • Shen, Z., Yang, H., Huang, X., Xiang, T., Wu, J., Zhou, Y., Yu, Z.: Electromagnetically induced transparency metamaterial with strong toroidal dipole response. Mater. Res. Express 7(3), 035802 (2020)

    CAS  ADS  Google Scholar 

  • Shu, C., Zhang, C., Ye, Y.L., Lin, T.Q.: Active manipulation of toroidal resonance in hybrid metal-vanadium dioxide metamaterial. Results Phys 33, 105146 (2022)

    Google Scholar 

  • Sun, G., Peng, S., Zhang, X., Zhu, Y.: Switchable electromagnetically induced transparency with toroidal mode in a graphene-loaded all-dielectric Metasurface. Nanomaterials 10, 1064 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Zhang, Y.T., Hu, F.R., Jiang, M.Z., Zhang, L.H., Zhang, W.T., Han, J.G.: Active dual-control terahertz electromagnetically induced transparency analog in VO2 metasurface. Appl. Phys. Lett. 7(6), 061701 (2023)

    ADS  Google Scholar 

  • Wu, Y., Xu, W., Zhou, H., Qiu, X., He, Y., Gao, Y., Wang, B.X.: Tunableness of single-band and dual-band absorption and filtering using vanadium-dioxide-based metamaterial. Appl. Phys. A 128(10), 930 (2020)

    ADS  Google Scholar 

  • Wu, G.Z., Jiao, X.F., Wang, Y.D., Zhao, Z.P., Wang, Y.B., Liu, J.G.: Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt. Express 29(2), 2703–2711 (2021)

    CAS  PubMed  ADS  Google Scholar 

  • Xiao, S., Wang, T., Liu, T., Yan, X., Li, Z., Xu, C.: Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126, 271 (2018)

    CAS  Google Scholar 

  • Xu, X., Zhang, C., Lv, G., Jiang, J., He, X.: Actively tunable and switchable electromagnetically induced transparency in hybrid metal-graphene metamaterials. Mater. Res. Express 8(2), 025802 (2021)

    CAS  ADS  Google Scholar 

  • Yan, C., Cui, Y., Wang, Q.: Superwide-band negative refraction of a symmetrical E-shaped metamaterial with two electromagnetic resonances. Phys. Rev. E 77(5), 056604 (2008)

    ADS  Google Scholar 

  • Yang, R., Fu, Q., Fan, Y.: Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators. Photonics Res 7, 955 (2019)

    CAS  Google Scholar 

  • Yang, T., Liu, X.M., Zhou, J.: Terahertz polarization conversion in an electromagnetically induced transparency (EIT)-like metamaterial. Ann. Phys. 533, 2000528 (2021)

    CAS  Google Scholar 

  • Zhang, M., Song, Z.Y.: Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption. Opt. Express 29(14), 21551–21561 (2021)

    CAS  PubMed  ADS  Google Scholar 

  • Zhang, S., Genov, D.A., Wang, Y., Liu, M., Zhang, X.: Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101(4), 047401 (2008)

    PubMed  ADS  Google Scholar 

  • Zhu, L., Dong, L., Guo, J., Meng, F.Y., He, X.J., Wu, T.H.: Polarization-independent transparent effect in windmill-like metasurface. J. Phys. D Appl. Phys. 51(26), 265101 (2018)

    ADS  Google Scholar 

  • Zhu, L., Zhao, X., Miao, F., Ghosh, B.K., Dong, L., Tao, B., Meng, F., Li, W.: Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial. Opt. Express 27(9), 12163–12170 (2019)

    CAS  PubMed  ADS  Google Scholar 

  • Zhu, L., Li, H., Dong, L., Zhou, W., Rong, M., Zhang, X., Guo, J.: Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor. Opt. Mater. Express 11(8), 2109–2121 (2021)

    CAS  ADS  Google Scholar 

  • Zhu, L., He, R.M., Dong, L., He, X., Meng, F.: Tunable terahertz metamaterial based on vanadium dioxide for electromagnetically induced transparency and reflection. Opt. Eng. 62(6), 067102 (2023)

    CAS  ADS  Google Scholar 

Download references

Funding

The work was financially supported by Heilongjiang Provincial Natural Science Foundation of China (grant NO. LH2022F040) and Harbin University Doctor Found (grant NO. HUDF2020108).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript. The main manuscript and the graphic drawing were performed by CS. The revision work is carried out by JM and HS. The references were made by LC and YS.

Corresponding author

Correspondence to Chang Shu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, C., Mei, J., Sun, H. et al. Tunable electromagnetically induced transparency metamaterial utilizing bright-dark mode coupling between electric and toroidal resonances. Opt Quant Electron 56, 43 (2024). https://doi.org/10.1007/s11082-023-05647-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05647-2

Keywords

Navigation