Skip to main content
Log in

Study of optical bistability/multistability and transparency in cavity-assisted-hybrid optomechanical system embedded with quantum dot molecules

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We theoretically explore optical bistability/multistability and transmission spectrum in a hybrid optomechanical system consisting of quantum dot molecules in a semiconductor cavity which is in turn coupled to an auxiliary cavity. This auxiliary cavity exhibits both linear and quadratic couplings to a mechanical oscillator. Here, the hybrid optomechanical system is continuously driven by a strong laser from both ends and a weak probe field applied to an auxiliary cavity. The nonlinear nature of the system in the Heisenberg-Langevin equation is taken into consideration and the perturbation method is utilized to deal with problems in the continuous wave regime. The outcome reveals that optical multistability and transmission (absorption and dispersion) spectrum can be deftly manipulated by properly adjusting the parameters. Such an investigation may be useful in designing all-optical switching devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data that support the finding of this study are included within the article.

References

  • Anetsberger, G., et al.: Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5, 909 (2009)

    CAS  Google Scholar 

  • Arcizet, O., et al.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature (London) 444, 71 (2006)

    CAS  PubMed  ADS  Google Scholar 

  • Asadpour, S.H., Soleimani, H.R.: Phase dependence of optical bistability and multistability in graphene nanostructure under external magnetic field. Laser Phys. Lett. 13, 015204 (2016)

    ADS  Google Scholar 

  • Asghari Nejad, A., Baghshahi, H.R., Askari, H.R.: Effect of second-order coupling on optical bistability in a hybrid optomechanical system. Eur. Phys. J. D 71, 267 (2017)

    ADS  Google Scholar 

  • Asjad, M., Abari, N.E., Zippilli, S., Vitali, D.: Optomechanical cooling with intracavity squeezed light. Opt. Express 27, 32427 (2019)

    PubMed  ADS  Google Scholar 

  • Bhattacharya, M., Giscard, P.-L., Meystre, P.: Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror. Phys. Rev. A 77, 013827 (2008)

    ADS  Google Scholar 

  • Boyd, R. W.: Nonlinear Optics, Academic Press, (2008)

  • Carmon, T., et al.: Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005)

    PubMed  ADS  Google Scholar 

  • Carmon, T., Cross, M.C., Vahala, K.J.: Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007)

    PubMed  ADS  Google Scholar 

  • Chem, Hua-Jun.: Auxiliary-cavity-assisted vaccum Rabi splitting of semiconductor quantum dot in a photonic crystal nanocavity. Photonic Research 6, 1171 (2018)

    Google Scholar 

  • Chen, X., et al.: Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A 92, 033841 (2015)

    ADS  Google Scholar 

  • Collett, M.J., Walls, D.F.: Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887–2892 (1985)

    CAS  ADS  Google Scholar 

  • Dobrindt, J.M., Kippenberg, T.J.: Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer. Phys. Rev. Lett. 104, 033901 (2010)

    CAS  PubMed  ADS  Google Scholar 

  • Dobrindt, J.M., Wilson-Rae, I., Kippenberg, T.J.: Parametric normal-Mode splitting in cavity optomechanics. Phys Rev Lett. 101, 263602 (2008)

    CAS  PubMed  ADS  Google Scholar 

  • Dong, Ying, Ye, Jinwu, Han, Pu.: Multistability in an optomechanical system with a two-component Bose-Einstein condensate. Phys. Rev. A 83, 031608(R) (2011)

    ADS  Google Scholar 

  • Eerkens, H.J., et al.: Optical side-band cooling of a low frequency optomechanical system. Opt. Express 23, 8014 (2015)

    CAS  PubMed  ADS  Google Scholar 

  • Elste, F., Girvin, S.M., Clerk, A.A.: Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett. 102, 207209 (2009)

    PubMed  ADS  Google Scholar 

  • Fano, U.: Effect of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961)

    CAS  ADS  Google Scholar 

  • Favero, I., Karrai, K.: Cavity cooling of a nanomechanical resonator by light scattering. New J. Phys. 10, 095006 (2008)

    ADS  Google Scholar 

  • Ghobadi, R., Bahrampour, A.R., Simon, C.: Quantum optomechanics in the bistable regime. Phys. Rev. A 84, 033846 (2011)

    ADS  Google Scholar 

  • Gigan, S., et al.: Self-cooling of a micromirror by radiation pressure. Nature (London) 444, 67 (2006)

    CAS  PubMed  ADS  Google Scholar 

  • Groblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature (London) 460, 724 (2009)

    PubMed  ADS  Google Scholar 

  • Groblacher, S., Hertzberg, J.B., Vanner, M.R., Cole, G.D., Gigan, S., Schwab, K.C., Aspelmeyer, M.: Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485 (2009)

    Google Scholar 

  • Hartmann, M.J., Plenio, M.B.: Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    PubMed  ADS  Google Scholar 

  • He, Y.: Optomechanically induced transparency associated with steady-state entanglement. Phys. Rev. A 91, 013827 (2015)

    ADS  Google Scholar 

  • He, Q., Badshah, F., Din, R.U., Zhang, H., Hu, Y., Ge, G.Q.: Multiple transparency in a multimode quadratic coupling optomechanical system with an ensemble of three-level atoms. J. Opt. Soc. B 35, 2550 (2018)

    CAS  ADS  Google Scholar 

  • He, Q., Badshah, F., Zhang, H., Ali, H., Basit, A., Hu, Y., Ge, G.Q.: Novel transparency, absorption and amplification in a driven optomechanical system with a two-level defect. Laser Phys. Lett. 16, 035202 (2019)

  • He, Qing, Badshah, Fazal, Alharbi, Thamer, Li, Liping, Yang, Linfeng: Normal-mode splitting in a linear and quadratic optomechanical system with an ensemble of two-level atoms. J. Opt. Soc. Am. B 37, 148 (2020)

    CAS  ADS  Google Scholar 

  • Hohberger-Metzger, C., Karrai, K.: Cavity cooling of microlever. Nature (London) 432, 1002 (2004)

    ADS  Google Scholar 

  • Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    ADS  Google Scholar 

  • Hou, B.P., Wei, L.F., Wang, S.J.: Optomechanically induced transparency and absorption in hybridized optomechanical systems. Phys. Rev. A 92, 033829 (2015)

    ADS  Google Scholar 

  • Huang, S., Agarwal, G.S.: Reactive-coupling-induced normal mode splittings in microdisk resonators coupled to waveguides. Phys. Rev. A 81, 053810 (2010)

    ADS  Google Scholar 

  • Huang, S., Agarwal, G.S.: Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A 83, 023823 (2011)

    ADS  Google Scholar 

  • Jayich, A.M., Sankey, J.C., Zwickl, B.M., Yang, C., Thompson, J.D., Girvin, S.M., Clerk, A.A., Marquardt, F., Harris, J.G.E.: Dispersive optomechanics: a membrane inside a cavity. New J. Phys. 10, 095008 (2008)

    ADS  Google Scholar 

  • Jiang, C., Jiang, L., Yu, H., Cui, Y., Li, X., Chen, G.: Fano resonance and slow light in hybrid optomechanics mediated by a two level system. Phys. Rev. A 96, 053821 (2017)

    ADS  Google Scholar 

  • Kleckner, D., et al.: High finesse optomechanical cavity with a movable thirty-micron-size mirror. Phys. Rev. Lett. 96, 173901 (2006)

    PubMed  ADS  Google Scholar 

  • Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature (London) 444, 75 (2006)

    CAS  PubMed  ADS  Google Scholar 

  • Kralj, N., et al.: Enhancement of three-mode optomechanical interaction by feedback-controlled light. Quantum Sci Technol. 2, 034014 (2017)

    ADS  Google Scholar 

  • Kronwald, A., Marquardt, F.: Optomechanically induced transparency in the nonlinear quantum regime. Phys. Rev. Lett. 111, 133601 (2013)

    PubMed  ADS  Google Scholar 

  • Li, M., Pernice, W.H.P., Tang, H.X.: Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. Phys. Rev. Lett. 103, 223901 (2009)

    PubMed  ADS  Google Scholar 

  • Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A 89, 014302 (2014)

    ADS  Google Scholar 

  • Lv, W., Deng, L., Huang, S., Chen, A.: Optomechanically induced transparency in optomechanical system with a cubic anharmonic oscillator. Photonics 10, 407 (2023)

    ADS  Google Scholar 

  • Mahajan, S., Aggarwal, N., Singh, M.K., et al.: Nonlinear effects of quadratic coupling in optical multistability and controllable transparency of a hybrid optomechanical system consisting of quantum dot molecules. Opt Quant Electron 55, 207 (2023)

    Google Scholar 

  • Mahajan, S., Bhattacherjee, A.B.: Controllable nonlinear effects in a hybrid optomechanical semiconductor microcavity containing a quantum dot and Kerr medium. Journal of Modern Optics 66(6), 652 (2019)

    CAS  ADS  Google Scholar 

  • Mahajan, S., Singh, M.K., Kumar, T., Bhattacherjee, A.B.: Effects of quadratic coupling on optical response of a hybrid optomechanical cavity assisted by Kerr non-linear medium. Materials Today: Proceedings 67, 5 (2022)

    Google Scholar 

  • Mancini, S., Tombesi, P.: Quantum noise reduction by radiation pressure. Phys. Rev. A 49, 4055–4065 (1994)

    CAS  PubMed  ADS  Google Scholar 

  • Marcinkeviius, S., Gushterov, A., Reithmaier, J.P.: Transient electromagnetically induced transparency in self-assembled quantum dots. Appl. Phys. Lett. 92, 041113 (2008)

    ADS  Google Scholar 

  • Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103, 213603 (2009)

    CAS  PubMed  ADS  Google Scholar 

  • Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    PubMed  ADS  Google Scholar 

  • Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006)

    PubMed  ADS  Google Scholar 

  • Metzger, C., Ludwig, M., et al.: Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008)

    PubMed  ADS  Google Scholar 

  • Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010)

    CAS  ADS  Google Scholar 

  • Müller, K., et al.: Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure. Phys. Rev. Lett. 108, 197402 (2012)

    PubMed  ADS  Google Scholar 

  • Nikolaev, V.V., Averkiev, N.S., Sobolev, M.M., Gadzhiyev, I.M., Bakshaev, I.O., Buyalo, M.S., Portnoi, E.L.: Tunnel coupling in an ensemble of vertically aligned quantum dots at room temperature. Phys. Rev. B 80, 205304 (2009)

    ADS  Google Scholar 

  • O Connell, A. D., Hofheinz, M., Ansmann, M., et al. Quantum ground state and single-phonon control of a mechanical resonator, Nature(London) 464 697703 (2010)

  • Paternostro, M., Vitali, D., Gigan, S., Kim, M.S., Brukner, C., Eisert, J., Aspelmeyer, M.: Creating and probing multipartite macroscopic entanglement with light. Phys. Rev. Lett. 99, 250401 (2007)

    CAS  PubMed  ADS  Google Scholar 

  • Regal, C., Teufel, J., Lehnert, K.: Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555 (2008)

    CAS  Google Scholar 

  • Rossi, M., et al.: Enhancing sideband cooling by feedbackcontrolled light. Phys Rev Lett. 119, 123603 (2017)

    PubMed  ADS  Google Scholar 

  • Safavi-Naeini, A.H., Groblacher, S., Hill, J.T., Chan, J., Aspelmeyer, M., Painter, O.: Squeezed light from silicon micromechanical resonator. Nature 500, 185 (2013)

    CAS  PubMed  ADS  Google Scholar 

  • Sankey, J.C., Yang, C., Zwickl, B.M., Jayich, A.M., Harris, J.G.E.: Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6, 707 (2010)

    CAS  Google Scholar 

  • Schliesser, A., et al.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    CAS  PubMed  ADS  Google Scholar 

  • Schliesser, A., Kippenberg, T.J.: Cavity optomechanics with whispering-gallery mode optical micro-resonators. Adv. At. Mol. Opt. Phys. 58, 207 (2010)

    CAS  ADS  Google Scholar 

  • She, Y., Zheng, X., Wang, D., Zhang, W.: Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule. Opt. Express 21, 17392 (2013)

    CAS  PubMed  ADS  Google Scholar 

  • She, Y., Zheng, X., Wang, D., Zhang, W.: Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule. Opt. Express 21, 17392–17403 (2013)

    CAS  PubMed  ADS  Google Scholar 

  • Singh, M.K., et al.: Photon blockade induced tunable source of one/two photon in a double quantum dot-semiconductor microcavity system. Optik 85, 685–691 (2019)

    ADS  Google Scholar 

  • Singh, S.K., et al.: Entanglement and coherence in a hybrid Laguerre-Gaussian rotating cavity optomechanical system with two-level atoms. J. Phys. B: At. Mol. Opt. Phys. 54, 215502 (2021)

    CAS  ADS  Google Scholar 

  • Singh, S.K., Asjad, M.: Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf Process 21, 47 (2022)

    MathSciNet  ADS  Google Scholar 

  • Singh, M.K., Jha, P.K., Bhattacherjee, A.B.: Optical switching and normal mode splitting in hybrid semiconductor microcavity containing quantum well and Kerr medium driven by amplitude-modulated field. Journal of Modern Optics 67(8), 692 (2020)

    MathSciNet  ADS  Google Scholar 

  • Singh, S.K., Mazaheri, M., et al.: Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Inf Process 22, 198 (2023)

    MathSciNet  ADS  Google Scholar 

  • Singh, S.K., Mazaheri, M., et al.: Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid cavity optomechanical system. Frontier in Physics 11, 1142452 (2023)

    ADS  Google Scholar 

  • Singh, S.K., Parvez, M., et al.: Tunable optical response and fast (slow) light in optomechanical system with phonon pump. Physics Letter A 442, 128181 (2022)

    CAS  Google Scholar 

  • Singh, S.K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390–2398 (2014)

    CAS  ADS  Google Scholar 

  • Solookinejad, G., Jabbari, M., Nafar, M., Ahmadi Sangachin, E., Asadpour, S. H.: Theoretical investigation of optical bistability and multistability via spontaneously generated coherence in four-level rydberg atoms, Int J Theor Phys 58, 1359 (2019)

  • Teufel, J.D., Donner, T., Li, D., et al.: Sideband cooling of micromechanical motion to the quantum ground state. Nature (London) 475, 359363 (2011)

    Google Scholar 

  • Thompson, J.D., et al.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature (London) 452, 72 (2008)

    CAS  PubMed  ADS  Google Scholar 

  • Ullah, K.: The occurrence of multistability and normal mode splitting in an optomechanical system. Physics Letters A 383, 25 (2019)

    Google Scholar 

  • Wang, C., Chen, H.J., Zhu, K.D.: Nonlinear optical response of cavity optomechanical system with second-order coupling. Appl. Opt. 54, 4623 (2015)

    PubMed  ADS  Google Scholar 

  • Wang, Y.D., Clerk, A.A.: Using interference for high fidelity quantum state transfer in optomechanics. Phys Rev Lett. 108, 153603 (2012)

    PubMed  ADS  Google Scholar 

  • Weis, S., Riviere, R., Deleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)

    CAS  PubMed  ADS  Google Scholar 

  • Xiao, Y., Min Li, Y., Liu, Yan Li, Sun, X., Gong, Q.: Asymmetric Fano resonance analysis in indirectly coupled microresonators. Phys. Rev. A 82, 065804 (2010)

    ADS  Google Scholar 

  • Xiong, Hao, Si, Liu-Gang., Zheng, An-Shou., Yang, Xiaoxue, Ying, Wu.: Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 86, 013815 (2012)

    ADS  Google Scholar 

  • Xiong, H., Wu, Y.: Fundamental and applications of optomechanically induced transparency. Appl. Phys. Rev. 5, 031305 (2018)

    ADS  Google Scholar 

  • Yang, Wen-Xing., Chen, Ai.-Xi., Lee, Ray-Kuang., Ying, Wu.: Matched slow optical soliton pairs via biexciton coherence in quantum dots. Phys. Rev. A 84, 013835 (2011)

    ADS  Google Scholar 

  • Yu, C., Yang, W., Sun, L., et al.: Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules. Opt Quant Electron 52, 267 (2020)

    CAS  Google Scholar 

  • Yu, C., Yang, W., Sun, L., Zhang, H., Chen, F.: Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules. Opt Quant Electron 52, 267 (2020)

    CAS  Google Scholar 

  • Yusoff, F.N., Zulkifli, M.A., et al.: Tunable transparency and group delay in cavity optomechanical systems with degenerate fermi gas. MDPI Photonics 10, 279 (2023)

    CAS  Google Scholar 

  • Zhou, Ya-Fei., Qin, Li-Guo., Huang, Jie-Hui., Wang, Li.-Li., Tian, Li-Jun., Wang, Zhong-Yang., Gong, Shang-Qing.: Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system with the cross-Kerr effect. J. Appl. Phys. 131, 194401 (2022)

    CAS  ADS  Google Scholar 

Download references

Funding

To prepare this manuscript, no funding was received by any of the authors.

Author information

Authors and Affiliations

Authors

Contributions

MKS and ABB conceived the theoretical model. MKS, RK and SM performed the calculations and plotted the graphs; RK and MKS. wrote the manuscript under the supervision of ABB and SM All authors reviewed the manuscript. This work forms a part of the PhD thesis of RK

Corresponding author

Correspondence to Madhav Kumar Singh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\(\alpha _{1}\) and \(\beta _{1}\) are defined as follows

$$\begin{aligned} \alpha _{1}=\, & {} \frac{(\gamma _{1} \gamma _{2} \gamma _{a}- \gamma _{1} \Delta _{2} \Delta _{a} - \gamma _{2} \Delta _{1} \Delta _{a} - \gamma _{a} \Delta _{1} \Delta _{2}+\gamma _{a}T_{e}^{2}+\gamma _{2}G^{2})(\gamma _{1}\gamma _{2}-\Delta _{1}\Delta _{2}+T_{e}^{2})}{(\gamma _{1}\gamma _{2}-\Delta _{1}\Delta _{2}+T_{e}^{2})^{2}+(\gamma _{1}\Delta _{2}+\gamma _{2}\Delta _{1})^{2}}\nonumber \\+ & {} \frac{(\gamma _{1} \gamma _{2}\Delta _{a}+\gamma _{1} \gamma _{a} \Delta _{2}+\gamma _{2}\gamma _{a}\Delta _{1}-\Delta _{1}\Delta _{2}\Delta _{a}+\Delta _{a}T_{e}^{2}+\Delta _{2}G^{2})(\gamma _{1}\Delta _{2}+\gamma _{2}\Delta _{1})}{(\gamma _{1}\gamma _{2}-\Delta _{1}\Delta _{2}+T_{e}^{2})^{2}+(\gamma _{1}\Delta _{2}+\gamma _{2}\Delta _{1})^{2}} \end{aligned}$$
(38)
$$\begin{aligned} \beta _{1}= & {} \frac{(\gamma _{1} \gamma _{2}\Delta _{a}+\gamma _{1} \gamma _{a} \Delta _{2}+\gamma _{2}\gamma _{a}\Delta _{1}-\Delta _{1}\Delta {2}\Delta {a}+\Delta _{a}T_{e}^{2}+\Delta _{2}G^{2})(\gamma _{1}\gamma _{2}-\Delta _{1}\Delta _{2}+T_{e}^{2})}{(\gamma _{1}\gamma _{2}-\Delta _{1}\Delta _{2}+T_{e}^{2})^{2}+(\gamma _{1}\Delta _{2}+\gamma _{2}\Delta _{1})^{2}}\nonumber \\- & {} \frac{(\gamma _{1} \gamma _{2} \gamma _{a}- \gamma _{1} \Delta _{2} \Delta _{a} - \gamma _{2} \Delta _{1} \Delta _{a} - \gamma _{a} \Delta _{1} \Delta _{2}+\gamma _{a}T_{e}^{2}+\gamma _{2}G^{2})(\gamma _{1}\Delta _{2}+\gamma _{2}\Delta _{1})}{(\gamma _{1}\gamma _{2}-\Delta _{1}\Delta _{2}+T_{e}^{2})^{2}+(\gamma _{1}\Delta _{2}+\gamma _{2}\Delta _{1})^{2}}. \end{aligned}$$
(39)

Appendix B

The \(\Lambda \), \(\chi \), \(\mu \) and \(\tau \) are defined as follows

$$\begin{aligned} \Lambda= & {} a+\frac{ce+df}{e^{2}+f^{2}},\end{aligned}$$
(40)
$$\begin{aligned} \chi= & {} b+\frac{de-cf}{e^{2}+f^{2}} \end{aligned}$$
(41)

where,

$$\begin{aligned} a= & {} \delta \gamma _{b} \gamma _{P}+(\Delta _{b}-\delta )\delta ^{2}+(\Delta _{b}-\delta )\omega _{m}(2G_{2}|b_{2}|^{2}-\omega _{m})-\delta ^{2}(G_{1}+G_{2}x_{s})x_{s}\nonumber \\- & {} (G_{1}+G_{2}x_{s})x_{s}\omega _{m}(2G_{2}|b_{2}|^{2}-\omega _{m})+\omega _{m}(G_{1}+G_{2}x_{s})^{2} x_{s}|b_{s}|^{2},\end{aligned}$$
(42)
$$\begin{aligned} b= & {} (\Delta _{b}-\delta )\delta \gamma _{P}-(G_{1}+G_{2}x_{s})\delta \gamma _{P} x_{s}-\gamma {b}\delta ^{2}-\gamma _{b}\omega _{m}(2G_{2}|b_{2}|^{2}-\omega _{m}), \end{aligned}$$
(43)
$$\begin{aligned} c=\, & {} J^{2}(T_{e}^{2}\gamma _{P}\delta +\gamma _{1}\gamma _{2}\gamma _{P}\delta -(\Delta _{1}-\delta )(\Delta _{2}-\delta )\gamma _{P}\delta +\delta ^{2}\gamma _{2}(\Delta _{1}-\delta )+\delta ^{2}\gamma _{1}(\Delta _{2}-\delta )\nonumber \\+ & {} \omega _{m}\gamma _{2}(\Delta _{1}-\delta )(2G_{2}|b_{2}|^{2}-\omega _{m})+\omega _{m}\gamma _{1}(\Delta _{2}-\delta )(2G_{2}|b_{2}|^{2}-\omega _{m})),\end{aligned}$$
(44)
$$\begin{aligned} d= \,& {} J^{2}(-T_{e}^{2}\delta ^{2}-\omega _{m}T_{e}^{2}2G_{2}|b_{s}|^{2}+\omega _{m}^{2}T_{e}^{2}-\gamma _{1}\gamma _{2}\delta ^{2}-\gamma _{1}\gamma _{2}\omega _{m}2G_{2}|b_{s}|^{2}+\omega _{m}^{2}\gamma _{1}\gamma _{2}\nonumber \\{} & {} \quad +(\Delta _{1}-\delta )(\Delta _{2}-\delta )\delta ^{2}\nonumber \\+ & {} (\Delta _{1}-\delta )(\Delta _{2}-\delta )\omega _{m}2G_{2}|b_{s}|^{2}-(\Delta _{1}-\delta )(\Delta _{2}-\delta )\omega _{m}^{2}+\gamma _{P}\gamma {2}\delta (\Delta _{1}-\delta )+\gamma _{1}\gamma _{P}\delta (\Delta _{2}-\delta )),\end{aligned}$$
(45)
$$\begin{aligned} e= \,& {} G^{2}\gamma _{2}+T_{e}^{2}\gamma _{a}+\gamma _{1}\gamma _{2}\gamma _{a}-\gamma _{a}(\Delta _{1}-\delta )(\Delta _{2}-\delta )-\gamma _{1}(\Delta _{a}-\delta )(\Delta _{2}-\delta )-(\Delta _{a}-\delta )(\Delta _{1}-\delta )\gamma _{2},\end{aligned}$$
(46)
$$\begin{aligned} f= \,& {} G^{2}(\Delta _{2}-\delta )+T_{e}^{2}(\Delta _{a}-\delta )+\gamma _{1}\gamma _{a}(\Delta _{2}-\delta )+\gamma _{2}\gamma _{a}(\Delta _{1}-\delta )\nonumber \\+ & {} (\Delta _{a}-\delta )\gamma _{1}\gamma _{2}-(\Delta _{1}-\delta )(\Delta _{2}-\delta )(\Delta _{a}-\delta ). \end{aligned}$$
(47)
$$\begin{aligned} \mu= \,& {} \gamma _{b}\gamma _{P}\delta -\Delta _{b}\delta ^{2}-\Delta _{b}\omega _{m}2G_{2}|b_{s}|^{2}+\Delta _{b}\omega _{m}^{2}-\delta ^{3}-\delta \omega _{m}2G_{2}|b_{s}|^{2}+\delta \omega _{m}^{2}+\delta ^{2}G_{1}x_{s}\nonumber \\{} & {} \quad +G_{1}x_{s}\omega _{m}2G_{2}|b_{s}|^{2}\nonumber \\- & {} G_{1}x_{s}\omega _{m}^{2}+G_{2}x_{s}^{2}\delta ^{2}+G_{2}x_{s}^{2}\omega _{m}2G_{2}|b_{s}|^{2}-G_{2}x_{s}^{2}\omega _{m}^{2}-\omega _{m}(G_{1}+2G_{2}x_{s})^{2}|b_{s}|^{2},\end{aligned}$$
(48)
$$\begin{aligned} \tau= \,& {} \gamma _{b}\delta ^{2}+\gamma _{b}\omega {m}2G_{2}|b_{s}|^{2}-\gamma _{b}\omega _{m}^{2}+\Delta _{b}\delta \gamma _{P}+\delta ^{2}\gamma _{P}-G_{1}x_{s}\delta \gamma _{P}-G_{2}\delta \gamma _{P}x_{s}^{2}. \end{aligned}$$
(49)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, M.K., Mahajan, S. et al. Study of optical bistability/multistability and transparency in cavity-assisted-hybrid optomechanical system embedded with quantum dot molecules. Opt Quant Electron 56, 91 (2024). https://doi.org/10.1007/s11082-023-05635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05635-6

Navigation