Skip to main content
Log in

Stability and numerical analysis of fractional BBM-Burger equation and fractional diffusion-wave equation with Caputo derivative

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper gives a highly efficient technique to analyse the fractional BBM-Burger equation and fractional Diffusion-Wave equation. These equations are used to model various real-life phenomena like acoustic gravity waves, diffusion theory, anomalous diffusive systems, and wave propagation phenomena. A modified technique, which is the combination of the Homotopy perturbation method and Laplace transform, is used for getting the numerical solution. The Lyapunov function is used to investigate asymptotic stability, and the maximum absolute error for the proposed technique is also examined. The efficiency of the proposed technique is shown by computing the root mean square (RMS), \({L}^{2},\) and \({L}^{\infty }\) errors and comparing the results with the other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MathSciNet  Google Scholar 

  • Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. ZAMM-J Appl Math Mech/ Zeitschriftfür Angewandte Mathematik Und Mechanik: Appl Math Mech 83, 265–274 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  • Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  • Alsaedi, A., Ahmad, B., Kirane, M., Torebek, B.T.: Blowing-up solutions of the time-fractional dispersive equations. Adv. Nonlinear Anal. 10, 952–971 (2021)

    Article  MathSciNet  Google Scholar 

  • Arshed, S., Akram, G., Sadaf, M.: Solutions of (3+1)-dimensional extended quantum nonlinear Zakharov-Kuznetsov equation using the generalized Kudryashov method and the modified Khater method. Opt. Quant. Electron. 55, 922 (2023). https://doi.org/10.1007/s11082-023-05137-5

    Article  Google Scholar 

  • Baleanu, D., Wu, G.C., Zeng, S.D.: Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solitons Fractals 102, 99–105 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  • Chaudhary, K.S., Kumar, N.: Fractional order fast terminal sliding mode control scheme for tracking control of robot manipulators. ISA Trans. 1–13 (2023). https://doi.org/10.1016/j.isatra.2023.08.008

    Article  PubMed  Google Scholar 

  • Chen, A., Li, C.: Numerical solution of fractional diffusion-wave equation. Numer. Funct. Anal. Optim. 37, 19–39 (2016)

    Article  MathSciNet  CAS  Google Scholar 

  • Delić, A.: Fractional in time diffusion-wave equation and its numerical approximation. Filomat 30, 1375–1385 (2016)

    Article  MathSciNet  Google Scholar 

  • Dubey, V.P., Dubey, S., Kumar, D., Singh, J.: A computational study of fractional model of atmospheric dynamics of carbon dioxide gas. Chaos Solitons Fractals 142, 110375 (2021a). https://doi.org/10.1016/j.chaos.2020.110375

    Article  MathSciNet  Google Scholar 

  • Dubey, V.P., Kumar, R., Singh, J., Kumar, D.: An efficient computational technique for time-fractional modified Degasperis-Procesi equation arising in propagation of nonlinear dispersive waves. J Ocean Eng Sci 6, 30–39 (2021c)

    Article  Google Scholar 

  • Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Numerical investigation of fractional model of phytoplankton–toxic phytoplankton–zooplankton system with convergence analysis. Int. J. Biomath. 15, 2250006 (2021d). https://doi.org/10.1142/S1793524522500061

    Article  MathSciNet  Google Scholar 

  • Dubey, S., Dubey, V.P., Singh, J., Alshehri, A.M., Kumar, D.: Computational study of a local fractional Tricomi equation occurring in fractal transonic flow. J. Comput. Nonlinear Dyn. 17, 081006 (2022a). https://doi.org/10.1115/1.4054482

    Article  Google Scholar 

  • Dubey, V.P., Kumar, D., Alshehri, H.M., Singh, J., Baleanu, D.: Generalized invexity and duality in multiobjective variational problems involving non-singular fractional derivative. Open Physics 20, 939–962 (2022b)

    Article  Google Scholar 

  • Dubey, V.P., Singh, J., Alshehri, A.M., Dubey, S., Kumar, D.: Forecasting the behavior of fractional order Bloch equations appearing in NMR flow via a hybrid computational technique. Chaos Solitons Fractals 164, 112691 (2022c). https://doi.org/10.1016/j.chaos.2022.112691

    Article  MathSciNet  Google Scholar 

  • Dubey, V.P., Singh, J., Dubey, S., Kumar, D.: Analysis of cauchy problems and diffusion equations associated with the hilfer-prabhakar fractional derivative via kharrat-toma transform. Fractal Fractional 7, 1–16 (2023a). https://doi.org/10.3390/fractalfract7050413

    Article  Google Scholar 

  • Dubey, V.P., Singh, J., Dubey, S., Kumar, D.: Some integral transform results for hilfer-prabhakar fractional derivative and analysis of free-electron laser equation. Iran J Sci 47, 1–10 (2023b)

    Article  MathSciNet  Google Scholar 

  • Dubey, V.P., Kumar, D., Dubey, S.: A modified computational scheme and convergence analysis for fractional order hepatitis E virus model. In Advanced Numerical Methods for Differential Equations, 279–312 (2021)

  • Fakhari, A., Domairry, G.: Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution. Phys. Lett. A 368, 64–68 (2007)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  • Hu, B., Xu, Y., Hu, J.: Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation. Appl. Math. Comput. 204, 311–316 (2008)

    MathSciNet  Google Scholar 

  • Janwised, J., Wongsaijai, B., Mouktonglang, T., Poochinapan, K.: A modified three-level average linear-implicit finite difference method for the Rosenau-Burgers equation. Adv. Math. Phys. 2014, 1–12 (2014). https://doi.org/10.1155/2014/734067

    Article  MathSciNet  Google Scholar 

  • Kumar, S., Kumar, D.: Fractional modelling for BBM-Burger equation by using new homotopy analysis transform method. J Associat Arab Univ Basic Appl Sci 16, 16–20 (2014)

    Google Scholar 

  • Li, C.: Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput. 311, 240–250 (2017)

    MathSciNet  Google Scholar 

  • Li, B., Eskandari, Z.: Dynamical analysis of a discrete-time SIR epidemic model. J. Franklin Inst. 360, 7989–8007 (2023)

    Article  MathSciNet  Google Scholar 

  • Li, B., Zhang, T., Zhang, C.: Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative. FRACTALS (fractals) 31, 1–13 (2023)

    Google Scholar 

  • Luchko, Y.: Fractional wave equation and damped waves. J. Math. Phys. 54, 1–21 (2013). https://doi.org/10.1063/1.4794076

    Article  MathSciNet  ADS  Google Scholar 

  • Luchko, Y.: Wave–diffusion dualism of the neutral-fractional processes. J. Comput. Phys. 293, 40–52 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  • Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion–wave equation. Comput. Math. Appl. 66, 774–784 (2013)

    Article  MathSciNet  Google Scholar 

  • Mainardi, F.: On some properties of the Mittag-Leffler function Eα-tα, completely monotone for t> 0 with 0<α< 1. Discrete Contin. Dyn. Syst. Ser. B 19, 2267–2278 (2014)

    MathSciNet  Google Scholar 

  • Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific (2022). https://doi.org/10.1142/P614

  • Majeed, A., Kamran, M., Abbas, M., Misro, M.Y.B.: An efficient numerical scheme for the simulation of time-fractional nonhomogeneous Benjamin-Bona-Mahony-Burger model. PhysicaScripta 96, 084002 (2021). https://doi.org/10.1088/1402-4896/abfde2

    ADS  Google Scholar 

  • Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  • Mohan, L., Prakash, A.: Stability and numerical analysis of the generalised time-fractional Cattaneo model for heat conduction in porous media. Eur Phys J plus 138, 294, 1–33 (2023). https://doi.org/10.1140/epjp/s13360-023-03765-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Podlubny I.: Fractional Differential Equations. New York, Academic Press, San Diego, 1–366 (1999)

  • Prakash, A., Mohan, L.: Application of Caputo fractional operator to analyse the fractional model of Brain Tumour via modified technique. Int J Appl Comput Math 9, 1–33 (2023). https://doi.org/10.1007/s40819-023-01591-7

    Article  MathSciNet  Google Scholar 

  • Qu, H., Ur Rahman, M., Ahmad, S., Riaz, M.B., Ibrahim, M., Saeed, T.: Investigation of fractional order bacteria dependent disease with the effects of different contact rates. Chaos, Solit Fractals 159, 112169 (2022). https://doi.org/10.1016/j.chaos.2022.112169

    Article  MathSciNet  Google Scholar 

  • Rahman, M.U., Arfan, M., Deebani, W., Kumam, P., Shah, Z.: Analysis of time-fractional Kawahara equation under Mittag-Leffler power law. Fractals 30, 2240021, 1–13 (2022). https://doi.org/10.1142/S0218348X22400217

    Article  ADS  Google Scholar 

  • Rahul, P., A.: Numerical simulation of SIR childhood diseases model with fractional Adams-Bashforth method. Math. Methods Appl. Sci. 46, 12340–12360 (2023)

    Article  MathSciNet  ADS  Google Scholar 

  • Raza, N., Rafiq, M.H., Alrebdi, T.A.: New solitary waves, bifurcation and chaotic patterns of Coupled Nonlinear Schrodinger System arising in fibre optics. Opt. Quant. Electron. 55, 853, 1–23 (2023). https://doi.org/10.1007/s11082-023-05097-w

    Article  CAS  Google Scholar 

  • Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  • Shen, X., Zhu, A.: A Crank-Nicolson linear difference scheme for a BBM equation with a time fractional nonlocal viscous term. Adv. Difference Equ. 2018, 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  • Xu, C., Ur Rahman, M., Fatima, B., Karaca, Y.: Theoretical and numerical investigation of complexities in fractional-order chaotic system having torus attractors. Fractals 30, 1–25 (2022). https://doi.org/10.3390/math9202593

    Article  ADS  Google Scholar 

  • Zahran, E.H.M., Ibrahim, R.A., Ozsahin, D.U.: New diverse exact optical solutions of the three dimensional Zakharov-Kuznetsov equation. Opt. Quant. Electron. 55, 1–20 (2023). https://doi.org/10.1007/s11082-023-04909-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amit Prakash, Ph.D. (Formal analysis: Equal; Funding acquisition: Equal; Project administration: Equal; Resources: Equal; Supervision: Equal; Validation: Equal; Writing – review & editing: Equal) Lalit Mohan, M.Sc. (Conceptualization: Equal; Data curation: Equal; Investigation: Equal; Methodology: Equal; Software: Equal; Visualization: Equal; Writing – original draft: Equal)

Corresponding author

Correspondence to Amit Prakash.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, L., Prakash, A. Stability and numerical analysis of fractional BBM-Burger equation and fractional diffusion-wave equation with Caputo derivative. Opt Quant Electron 56, 26 (2024). https://doi.org/10.1007/s11082-023-05608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05608-9

Keywords

Navigation