Skip to main content
Log in

A nano-scale design of a multiply-accumulate unit for digital signal processing based on quantum computing

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Digital signal processing (DSP) is used in computer processing to conduct different signal-processing tasks. The DSPs are used in the series numbers representing a continuous variable in a domain such as time, area, or frequency. The multiply-accumulate (MAC) unit is crucial in various DSP applications, including convolution, discrete cosine transform (DCT), Fourier Transform, etc. Thus, all DSPs contain a critical MAC unit in signal processing. The MAC unit conducts multiplication and accumulation operations for continuous and complicated DSP application processes. On the other hand, in the MAC structure, the stability of the circuit and the occupied area pose some significant challenges. However, high-performance quantum technology can easily overcome all the previous shortcomings. Hence, this paper suggests an efficient MAC for DSP applications using a Vedic multiplier, half adder, and accumulator based on quantum technology. All the proposed structures have used a single-layer layout without rotated cells. The suggested architecture is designed and validated based on the QCADesigner 2.0.3 tool. The findings revealed that all the developed circuits have a simple architecture with fewer quantum cells, optimal area, and low latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The paper contains all of the data.

References

  • Abbasizadeh, A., Mosleh, M., Ahmadpour, S.-S.: An optimized arithmetic logic unit in quantum-dot cellular automata (QCA) technology. Optik 262, 169258 (2022)

    CAS  ADS  Google Scholar 

  • Abdelgawad, A., Bayoumi, M.: High speed and area-efficient multiply accumulate (MAC) unit for digital signal prossing applications. In 2007 IEEE international symposium on circuits and systems. IEEE (2007)

  • Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)

    CAS  ADS  Google Scholar 

  • Ahmad, P.Z., Ahmad, F., Khan, H.A.: A new F-shaped XOR gate and its implementations as novel adder circuits based quantum-dot cellular automata (QCA). IOSR J. Comput. Eng. 16(3), 110–117 (2014)

    Google Scholar 

  • Ahmadpour, S.S., Mosleh, M., Rasouli Heikalabad, S.: Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int. J. Circuit Theory Appl. 47(7), 1037–1056 (2019)

    Google Scholar 

  • Ahmadpour, S.-S., Mosleh, M., Asadi, M.-A.: The development of an efficient 2-to-4 decoder in quantum-dot cellular automata. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 391–405 (2021)

    Google Scholar 

  • Ahmadpour, S.-S., et al.: An efficient and energy-aware design of a novel nano-scale reversible adder using a quantum-based platform. Nano Commun. Netw. 34, 100412 (2022a)

    Google Scholar 

  • Ahmadpour, S.-S., Mosleh, M., Rasouli Heikalabad, S.: Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis. J. Supercomput. 78(2), 1672–1695 (2022b)

    Google Scholar 

  • Ahmadpour, S.-S., et al.: A nano-scale n-bit ripple carry adder using an optimized XOR gate and quantum-dots technology with diminished cells and power dissipation. Nano Commun. Netw. 36, 100442 (2023)

    Google Scholar 

  • Akbari-Hasanjani, R., Sabbaghi-Nadooshan, R.: Innovation quinary and n-value toward fuzzy logic QCA cell design. Adv. Theory Simul. 5(2), 2100304 (2022)

    Google Scholar 

  • Ali, T.A.A., et al.: A class of digital integrators based on trigonometric quadrature rules. IEEE Trans. Ind. Electron. (2023). https://doi.org/10.1109/TIE.2023.3290247

    Article  Google Scholar 

  • Anitha, R., et al.: A 32 bit mac unit design using vedic multiplier and reversible logic gate. In: 2015 International conference on circuits, power and computing technologies [ICCPCT-2015]. IEEE (2015)

  • Azad, F., et al.: Analysis of the spike responses in the neuromorphic implementation of the two-compartmental model of hippocampal pyramidal neuron. J. Comput. Sci. 66, 101909 (2023)

    Google Scholar 

  • Clegg, H.R., et al.: An Open, modular, ultrasound digitial signal processing specification. In: 2022 IEEE international ultrasonics symposium (IUS). IEEE (2022)

  • Das, J.C., De, D.: Nano-scale design of full adder and full subtractor using reversible logic based decoder circuit in quantum-dot cellular automata. Int. J. Numer. Model. Electron. Netw. Dev. Fields 36, e3092 (2023)

    Google Scholar 

  • Deng, F., et al.: A general and efficient clocking scheme for majority logic in quantum-dot cellular automata. Microelectron. J. 128, 105544 (2022)

    Google Scholar 

  • Ding, G., et al.: Interval-bounded optimal power pattern synthesis of array antenna excitations robust to mutual coupling. IEEE Antennas Wirel. Propag. Lett. (2023). https://doi.org/10.1109/LAWP.2023.3291428

    Article  Google Scholar 

  • Gassoumi, I., Touil, L., Ouni, B.: Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis. IET Circuits Dev. Syst. 13(4), 534–543 (2019)

    Google Scholar 

  • Gassoumi, I., Touil, L., Ouni, B.: Design of efficient quantum-dot cellular automata (QCA) MAC Unit. In: 2018 30th international conference on microelectronics (ICM). IEEE (2018)

  • Ghosh, R., Hansen, J.H.: Bilateral cochlear implant processing of coding strategies with CCi-MOBILE, an open-source research platform. IEEE/ACM Trans. Audio Speech Lang. Proces. (2023). https://doi.org/10.1109/TASLP.2023.3267608

    Article  Google Scholar 

  • Harish, B., Rukmini, M., Sivani, K.: Design of MAC unit for digital filters in signal processing and communication. Int. J. Speech Technol. 25(3), 561–565 (2022)

    Google Scholar 

  • Hong, Q., et al.: Circuit design and application of discrete cosine transform based on memristor. IEEE J. Emerg. Sel. Top. Circuits Syst. (2023). https://doi.org/10.1109/JETCAS.2023.3243569

    Article  Google Scholar 

  • Huang, J., et al.: A survey on superconducting computing technology: circuits, architectures and design tools. CCF Trans. High Perform. Comput. 4(1), 1–22 (2022)

    Google Scholar 

  • Jagarlamudi, H.S., Saha, M., Jagarlamudi, P.K.: Quantum dot cellular automata based effective design of combinational and sequential logical structures. World Acad. Sci. Eng. Technol. 60, 671–675 (2011)

    Google Scholar 

  • Karl, J.H.: An introduction to digital signal processing. Elsevier, Amsterdam (2012)

    Google Scholar 

  • Khadir, M., et al.: QCA based optimized arithmetic models. In: 2021 4th International conference on recent trends in computer science and technology (ICRTCST). IEEE (2022)

  • Kishore, P., et al.: Implementation of braun and baugh-wooley multipliers using QCA. In: 2023 2nd international conference for innovation in technology (INOCON). IEEE (2023)

  • Lakshmi, S.K., Athisha, G.: Design and analysis of adders using nanotechnology based quantum dot cellular automata. J. Comput. Sci. 7(7), 1072 (2011)

    Google Scholar 

  • Li, M., et al.: Scaling-basis chirplet transform. IEEE Trans. Industr. Electron. 68(9), 8777–8788 (2020)

    Google Scholar 

  • Li, B., et al.: Transceiver optimization for wireless powered time-division duplex MU-MIMO systems: non-robust and robust designs. IEEE Trans. Wirel. Commun. 21(6), 4594–4607 (2021)

    Google Scholar 

  • Li, B., et al.: Dynamic event-triggered security control for networked control systems with cyber-attacks: a model predictive control approach. Inf. Sci. 612, 384–398 (2022)

    Google Scholar 

  • Lin, C.-C., Sur-Kolay, S., Jha, N.K.: PAQCS: physical design-aware fault-tolerant quantum circuit synthesis. IEEE Trans. Very Larg. Scale Integr. Syst. 23(7), 1221–1234 (2014)

    Google Scholar 

  • Lu, L., et al.: QCA systolic array design. IEEE Trans. Comput. 62(3), 548–560 (2011)

    MathSciNet  Google Scholar 

  • Lv, Z., Cheng, C., Song, H.: Digital twins based on quantum networking. IEEE Netw. 36(5), 88–93 (2022)

    Google Scholar 

  • Ma, K., et al.: Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet Things J. 8(17), 13343–13354 (2021)

    Google Scholar 

  • Mahesh, R., et al.: Filter bank channelizers for multi-standard software defined radio receivers. J. Sig. Process. Syst. 62, 157–171 (2011)

    Google Scholar 

  • Mamdouh, A., et al.: Design of efficient ai accelerator building blocks in quantum-dot cellular automata (QCA). IEEE J. Emerg. Sel. Top. Circuits Syst. 12(3), 703–712 (2022)

    ADS  Google Scholar 

  • Niknezhad Divshali, M., Rezai, A., Karimi, A.: Novel multilayer SISO shift register architecture in QCA technology and its usage in communications. Int. J. Commun. Syst. 35(8), e5121 (2022)

    Google Scholar 

  • Noorallahzadeh, M., Mosleh, M., Ahmadpour, S.-S.: Efficient designs of reversible synchronous counters in nanoscale. Circuits Syst. Signal Process. 40(11), 5367–5380 (2021)

    Google Scholar 

  • Pan, C., et al.: An overview of signal processing techniques for RIS/IRS-aided wireless systems. IEEE J. Sel. Top. Sig. Process. (2022). https://doi.org/10.1109/JSTSP.2022.3195671

    Article  Google Scholar 

  • Parameshwara, M., Maroof, N.: An area-efficient majority logic-based approximate adders with low delay for error-resilient applications. Circuits Systems Signal Process. 41(9), 4977–4997 (2022)

    Google Scholar 

  • Poorhosseini, M., Hejazi, A.R.: A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput. 27(07), 1850115 (2018)

    Google Scholar 

  • Qu, Z., Liu, X., Zheng, M.: Temporal-spatial quantum graph convolutional neural network based on Schrödinger approach for traffic congestion prediction. IEEE Trans. Intell. Transp. Syst. 24, 8677–8686 (2022). https://doi.org/10.1109/TITS.2022.3203791

    Article  Google Scholar 

  • Qu, Z., et al.: Quantum detectable Byzantine agreement for distributed data trust management in blockchain. Inf. Sci. 637, 118909 (2023)

    Google Scholar 

  • Rahmani, Y., Heikalabad, S.R., Mosleh, M.: A novel reversible 2–1 multiplexer scheme in quantum-dot cellular automata. Opt. Quant. Electron. 54(10), 657 (2022)

    Google Scholar 

  • Reddy, B.N.K., Vani, B.V., Lahari, G.B.: An efficient design and implementation of Vedic multiplier in quantum-dot cellular automata. Telecommun. Syst. 74(4), 487–496 (2020)

    Google Scholar 

  • Safoev, N., Jeon, J.-C.: Design and evaluation of cell interaction based vedic multiplier using quantum-dot cellular automata. Electronics 9(6), 1036 (2020)

    Google Scholar 

  • Scherer, K.R.: Vocal communication of emotion: a review of research paradigms. Speech Commun. 40(1–2), 227–256 (2003)

    Google Scholar 

  • Seyedi, S., Jafari Navimipour, N.: Designing a multi-layer full-adder using a new three-input majority gate based on quantum computing. Concurr. Comput. Practice Exp. 34(4), e6653 (2022)

    Google Scholar 

  • Seyedi, S., Navimipour, N.J.: Designing a three-level full-adder based on nano-scale quantum dot cellular automata. Photon Netw. Commun. 42, 184–193 (2021a)

    Google Scholar 

  • Seyedi, S., Navimipour, N.J.: Designing a three-level full-adder based on nano-scale quantum dot cellular automata. Photon Netw. Commun. 42(3), 184–193 (2021b)

    Google Scholar 

  • Seyedi, S., Navimipour, N.J.: An efficient structure for designing a nano-scale fault-tolerant 2:1 multiplexer based on quantum-dot cellular automata. Optik 251, 168409 (2022)

    ADS  Google Scholar 

  • Seyedi, S., Navimipour, N., Otsuki, A.: Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology. Electronics 10, 2565 (2021a)

    Google Scholar 

  • Seyedi, S., Navimipour, N.J., Otsuki, A.: Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology. Electronics 10(21), 2565 (2021b)

    Google Scholar 

  • Seyedi, S., Jafari Navimipour, N., Otsuki, A.: A new nano-scale and energy-optimized reversible digital circuit based on quantum technology. Electronics 11(23), 4038 (2022a)

    Google Scholar 

  • Seyedi, S., Pourghebleh, B., Jafari Navimipour, N.: A new coplanar design of a 4-bit ripple carry adder based on quantum-dot cellular automata technology. IET Circuits Devices Syst. 16(1), 64–70 (2022b)

    Google Scholar 

  • Shi, J., et al.: Waveform-to-waveform end-to-end learning framework in a seamless fiber-terahertz integrated communication system. J. Lightwave Technol. 41(8), 2381–2392 (2023)

    ADS  Google Scholar 

  • Shraavya, P., et al.: Analysis of high performance low power full adder circuit. In: 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS). IEEE (2023)

  • Tan, B., et al.: Comparing the performance of 850 GHz integrated bias-tee superconductor-insulator-superconductor (SIS) mixers with single-and parallel-junction tuner. Supercond. Sci. Technol. 35(12), 125008 (2022)

    ADS  Google Scholar 

  • Torres, F.S., et al.: An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(12), 3031–3041 (2018)

    Google Scholar 

  • Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    ADS  Google Scholar 

  • Walus, K., et al.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: 2005 IEEE international conference on application-specific systems, architecture processors (ASAP'05). IEEE (2005)

  • Wang, J., et al.: A logistic mapping-based encryption scheme for wireless body area networks. Futur. Gener. Comput. Syst. 110, 57–67 (2020)

    ADS  Google Scholar 

  • Wu, C., et al.: Quantum-dot cellular automata-based design for three-level nanoscale full-subtractor. Chin. J. Phys. 84, 240–247 (2022)

    ADS  Google Scholar 

  • Xu, K.-D., et al.: 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology. IEEE Electron Device Lett. 42(8), 1120–1123 (2021)

    CAS  ADS  Google Scholar 

  • Yang, J., et al.: Exploring the relationship between children’s facial emotion processing characteristics and speech communication ability using deep learning on eye tracking and speech performance measures. Comput. Speech Lang. 76, 101389 (2022)

    Google Scholar 

  • Ying, Z., Liqiang, A., Zhangqi, W.: Location effects on bend-twist coupling modes characteristic of the laminate plates. Compos. Adv. Mater. 30, 26349833211057136 (2021)

    Google Scholar 

  • Zhang, Y., et al.: Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photon. 8(1), 202–208 (2020)

    MathSciNet  CAS  ADS  Google Scholar 

  • Zhang, Z., et al.: Flight trajectory prediction enabled by time-frequency wavelet transform. Nat. Commun. 14(1), 5258 (2023)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zhao, J., et al.: Integrated sensing and communications for UAV communications with jittering effect. IEEE Wirel. Commun. Lett. 12(4), 758–762 (2023)

    Google Scholar 

  • Zhou, G., et al.: Gaussian inflection point selection for LiDAR hidden echo signal decomposition. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Seyed-Sajad Ahmadpour: Conceptualization, Visualization, Funding acquisition, Formal analysis, Methodology, Writing – original draft, Writing – review & editing. Nima Jafari Navimipour: Conceptualization, Visualization, Funding acquisition, Formal analysis, Methodology, Writing – original draft, Writing – review & editing. Danial Bakhshayeshi Avval: Conceptualization, Visualization, Funding acquisition, Formal analysis, Methodology, Writing – original draft, Writing – review & editing. Noor Ul Ain: Conceptualization, Visualization, Funding acquisition, Formal analysis, Methodology, Writing – original draft, Writing – review & editing. Senay Yalcin: Conceptualization, Visualization, Funding acquisition, Formal analysis, Methodology, Writing – original draft, Writing – review & editing.

Corresponding author

Correspondence to Nima Jafari Navimipour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadpour, SS., Navimipour, N.J., Yalcin, S. et al. A nano-scale design of a multiply-accumulate unit for digital signal processing based on quantum computing. Opt Quant Electron 56, 19 (2024). https://doi.org/10.1007/s11082-023-05604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05604-z

Keywords

Navigation