Skip to main content
Log in

Dynamics of nonlinear diverse wave propagation to Improved Boussinesq model in weakly dispersive medium of shallow waters or ion acoustic waves using efficient technique

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, we will extract new impressive visions for the exact traveling wave solutions to the Improved Boussinesq dynamical model of water wave problems in a weakly dispersive medium of shallow water or ion acoustic waves under the damping constant of internal friction. In this study, the new extended direct algebraic method has been used to generate some new and more universal exact traveling wave solutions. The recovered solutions are divided into single (kink, anti-kink, singular), bright, dark, complex, and combo forms. During the derivation, new families of hyperbolic, exponential, and periodic wave solutions with arbitrary parameters also emerged. The achieved outcomes are examined using three-dimensional plotline, contour plot, and two-dimensional plotline for definite parametric values. Additionally, the results have been compared with other existing results in the literature to show their uniqueness. Moreover, the findings show that the method taken is successful, simple, and can be use even to complicated phenomena, and this work will also be helpful to a large number of engineering model specialists and in many other areas of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  • Amjad, Z., Haider, B.: Binary Darboux transformation of time-discrete generalized lattice Heisenberg magnet model. Chaos Solitons Fract. 130, 109404 (2020)

    MathSciNet  Google Scholar 

  • Bai, S.T., Yin, X.J., Cao, N., Xu, L.Y.: A high dimensional evolution model and its rogue wave solution, breather solution and mixed solutions. Nonlinear Dyn. 111, 12479–12494 (2023)

    Google Scholar 

  • Baskonus, H.M., Gao, W.: Investigation of optical solitons to the nonlinear complex Kundu–Eckhaus and Zakharov–Kuznetsov–Benjamin–Bona–Mahony equations in conformable. Opt. Quantum Electron. 54(388), 1–23 (2022)

    Google Scholar 

  • Bilal, M., Ren, J.: Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Opt. Quantum Electron. 54, 40 (2022)

    Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Dynamics of exact soliton solutions in the double-chain model of deoxyribonucleic acid. Math. Meth. Appl. Sci. 44(17), 13357–13375 (2021)

    MathSciNet  Google Scholar 

  • Bilal, M., Hu, W., Ren, J.: Different wave structures to the Chen–Lee–Liu equation of monomode fibers and its modulation instability analysis. Eur. Phys. J. Plus 136(4), 1–15 (2021)

    Google Scholar 

  • Bilal, M., Younas, U., Ren, J.: Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics. Opt. Quantum Electron. 53, 522 (2021)

    Google Scholar 

  • Bilal, M., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Zahed, H.: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Math. Meth. Appl. Sci. 44(05), 4094–4104 (2021)

    MathSciNet  Google Scholar 

  • Bilal, M., Ren, J., Younas, U.: Stability analysis and optical soliton solutions to the nonlinear Schr\({\ddot{\bf o}}\)dinger model with efficient computational techniques. Opt. Quantum Electron. 53, 406 (2021)

    Google Scholar 

  • Bilal, M., Ren, J., Inc, M., Almohsen, B., Akinyemi, L.: Dynamics of diverse wave propagation to integrable Kraenkel–Manna–Merle system under zero damping effect in ferrites materials. Opt. Quantum Electron. 55, 646 (2023)

    Google Scholar 

  • Bilal, M., Ren, J., Inc, M., Alqahtani, R.T.: Dynamics of solitons and weakly ion-acoustic wave structures to the nonlinear dynamical model via analytical techniques. Opt. Quantum Electron. 55, 656 (2023)

    Google Scholar 

  • Bilal, M., Rehman, S.U., Younas, U., Baskonus, H.M., Younis, M.: Investigation of shallow water waves and solitary waves to the conformable 3D-WBBM model by an analytical method. Phys. Lett. A 403, 127388 (2021)

    MathSciNet  CAS  Google Scholar 

  • Boussinesq, J.: Theorie des ondes et des remous qui sepropagent le long dun canal rectangulaire horizontal encommuniquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond’’. J. Math. Pures Appl. 17(2), 55–108 (1872)

    MathSciNet  Google Scholar 

  • Boussinesq, J.: Essai sur la theorie des eaux courantes. Mem. Acad. Sci. Inst. Nat. France 23(1), 1–680 (1877)

    Google Scholar 

  • Cao, N., Yin, X.J., Bai, S.T., Xu, L.Y.: Multiple soliton solutions, lump, rogue wave and breather solutions of high dimensional equation for describing Rossby waves. Results Phys. 51, 106680 (2023)

    Google Scholar 

  • Cao, N., Yin, X.J., Bai, S.T., Xu, L.Y.: Breather wave, lump type and interaction solutions for a high dimensional evolution model. Chaos Solitons Fract. 172, 113505 (2023)

    MathSciNet  Google Scholar 

  • Causanilles, F.S.V., Baskonus, H.M., Guirao, J.L.G., Bermúdez, G.R.: Some important points of the Josephson effect via two superconductors in complex bases. Mathematics 10(2591), 1–13 (2022)

    Google Scholar 

  • Dahiya, S., Kumar, H., Kumar, A., Gautam, M.S.: Optical solitons in twin-core couplers with the nearest neighbor coupling. Partial Differ. Equ. Appl. Math. 4, 100136 (2021)

    Google Scholar 

  • El-Zoheiry, H.: Numerical study of the improved Boussinesq equation. Chaos Solitons Fract. 14(3), 377–384 (2002)

    MathSciNet  ADS  Google Scholar 

  • Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88, 177–84 (2014)

    CAS  ADS  Google Scholar 

  • Fan, K., Zhou, C.: Exact solutions of damped improved boussinesq equations by extended \(\frac{G^{\prime }}{G}\)-expansion method. Complexity 2020, 1–14 (2020)

    Google Scholar 

  • Habib, R., Khan, T.S., Ahmad, Z., Khan, M.S., Bonyah, E.: Two-dimensional stable lattice Boltzmann simulation of turbulent flow in wavy walled channel. AIP Adv. 13, 015114 (2023)

    ADS  Google Scholar 

  • Hatice, T., Polat, N., Ertas, A.: Global existence and decay of solutions for the generalized bad Boussinesq equation. Appl. Math. A J. Chin. Univ. 28(3), 253–268 (2013)

    MathSciNet  Google Scholar 

  • Houwe, A., et al.: Chirped solitons in discrete electrical transmission line. Results Phys. 18, 103188 (2020)

    Google Scholar 

  • Iqbal, M., Seadawy, A.R., Khalil, O.H., Lu, D.: Propagation of long internal waves in density stratified ocean for the (2+1)-dimensional nonlinear Nizhnik–Novikov–Vesselov dynamical equation. Results Phys. 16, 102838 (2020)

    Google Scholar 

  • Karaagac, B.: New exact solutions for some fractional order differential equations via improved sub-equation method. Dis. Cont. Dyn. Syst. 12, 447–54 (2019)

    MathSciNet  Google Scholar 

  • Karaagac, B., Ucar, Y., Esen, A.: Dynamics of modified improved Boussinesq equation via Galerkin Finite Element Method. Math. Meth. Appl. Sci. 43(17), 10204–10220 (2020)

    MathSciNet  Google Scholar 

  • Khan, N., Ali, F., Ahmad, Z., Murtaza, S., Ganie, A.H., Khan, I., Eldin, S.M.: A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease. Sci. Rep. 13, 4428 (2023)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Khater, M.M.A., et al.: Novel exact solutions of the fractional Bogoyavlensky–Konopelchenko equation involving the Atangana–Baleanu–Riemann derivative. Alex. Eng. J. 59, 2957–2967 (2020)

    Google Scholar 

  • Khatri, H., Gautam, M.S., Malik, A.: Localized and complex soliton solutions to the integrable (4+ 1)-dimensional Fokas equation. SN Appl. Sci. 1, 1–9 (2019)

    CAS  Google Scholar 

  • Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Nonlinear Sci. Numer. Simul. 17, 2248–53 (2012)

    MathSciNet  Google Scholar 

  • Kumar, R., Kaushal, R.S., Prasad, A.: Solitary wave solutions of selective nonlinear diffusion-reaction equations using homogeneous balance method. Pramana-J Phys. 75, 607–16 (2010)

    CAS  ADS  Google Scholar 

  • Kumar, H., Malik, A., Gautam, M.S., Chand, F.: Dynamics of shallow water waves with various Boussinesq equations. Acta Phys. Pol. A 131(2), 275–282 (2017)

    ADS  Google Scholar 

  • Kumar, H., Kumar, A., Chand, F., Singh, R.M., Gautam, M.S.: Construction of new traveling and solitary wave solutions of a nonlinear PDE characterizing the nonlinear low-pass electrical transmission lines. Phys. Scr. 96(8), 085215 (2021)

    ADS  Google Scholar 

  • Li, L., Duan, C., Yu, F.: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Phys. Lett. A 383, 1578–82 (2019)

    MathSciNet  CAS  ADS  Google Scholar 

  • Lou, M.R., Zhang, Y.P., Kong, L.Q., Dai, C.Q.: Be careful with the equivalence of different ansätz of improved tanh-function method for nonlinear models. Appl. Math. Lett. 48, 23–29 (2015)

    MathSciNet  Google Scholar 

  • Malik, A., Kumar, H., Chahal, R.P., Chand, F.: A dynamical study of certain nonlinear diffusion-reaction equations with a nonlinear convective flux term. Pramana 92, 1–13 (2019)

    ADS  Google Scholar 

  • Mirhosseni-Alizamini, S.M., Rezazadeh, H., Srinivasa, K., Bekir, A.: New closed form solutions of the new coupled Konno–Oono equation using the new extended direct algebraic method. Pramana 94, 52 (2020)

    ADS  Google Scholar 

  • Murtaza, S., Kumam, P., Kaewkhao, A., Khan, N., Ahmad, Z.: Fractal fractional analysis of nonlinear electro osmotic flow with cadmium telluride nanoparticles. Sci. Rep. 12(1), 20226 (2022)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Murtaza, S., Ahmad, Z., Ali, Ibn E., Akhtar, Z., Tchier, F., Ahmad, H., Yao, S.W.: Analysis and numerical simulation of fractal-fractional order non-linear couple stress nanofluid with cadmium telluride nanoparticles. J. King Saud Univ. Sci. 35(4), 102618 (2023)

    Google Scholar 

  • Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dyn. 96, 1491–96 (2019)

    Google Scholar 

  • Raddadi, M.H., Younis, M., Seadawy, Aly R., Rehman, S.U., Bilal, M., Rizvi, S.T.R., Althobaiti, Ali: Dynamical behaviour of shallow water waves and solitary wave solutions of the Dullin–Gottwald–Holm dynamical system. J. King Saud Univ. Sci. 33, 101627 (2021)

    Google Scholar 

  • Rezazadeh, H., Younis, M., Eslami, M., Rehman, S.U., Bilal, M., Younas, U.: New exact traveling wave solutions to the (2+ 1)-dimensional Chiral nonlinear Schrödinger equation. Math. Model. Nat. Phenom. 16, 38 (2021)

    Google Scholar 

  • Seadawy, A.R., Lu, D.: Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Results Phys. 7, 43–51 (2017)

    ADS  Google Scholar 

  • Seadawy, A.R., Bilal, M., Younis, M., Rizvi, S.T.R., Althobaiti, S., Makhlouf, M.M.: Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique. Chaos Solitons Fract. 144, 110669 (2021)

    MathSciNet  Google Scholar 

  • Shah, J., Ali, F., Khan, N., Ahmad, Z., Murtaza, S., Khan, I., Mahmoud, O.: MHD flow of time-fractional Casson nanofluid using generalized Fourier and Fick’s laws over an inclined channel with applications of gold nanoparticles. Sci. Rep. 12, 17364 (2022)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Sulaiman, T.A.: Three-component coupled nonlinear Schrödinger equation: optical soliton and modulation instability analysis. Phys. Scr. 95, 065201 (2020)

    CAS  ADS  Google Scholar 

  • Sulaiman, T.A.: Three-component coupled nonlinear Schr\({\ddot{\bf o}}\)dinger equation: Optical soliton and modulation instability analysis. Phys. Scr. 95(6), 065201 (2020)

    CAS  ADS  Google Scholar 

  • Varlamov, V.: Eigenfunction expansion method and the longtime asymptotics for the damped Boussinesq equation. Discr. Contin. Dyn. Syst.-A 7(4), 675–702 (2001)

    Google Scholar 

  • Wang, X., Xu, Q., Atluri, S.N.: Combination of the variational iteration method and numerical algorithms for nonlinear problems. Appl. Math. Modell. 79, 243–89 (2020)

    MathSciNet  Google Scholar 

  • Xing, L., Xiu, M.W., Shouting, C., Masood, K.C.: A note on rational solutions to a Hirota–Satsuma-like equation. Appl. Math. Lett. 58, 13–8 (2016)

    MathSciNet  Google Scholar 

  • Xu, L., Cheng, X., Dai, C.Q.: Discussions on equivalent solutions and localized structures via the mapping method based on Riccati equation. Eur. Phys. J. Plus 130, 242 (2015)

    Google Scholar 

  • Yang, Z., Wang, X.: Blowup of solutions for improved Boussinesq type equation. J. Math. Anal. Appl. 278(2), 335–353 (2003)

    MathSciNet  Google Scholar 

  • Yıldırım, Y., et al.: Sub pico-second optical pulses in birefringent fibers for Kaup–Newell equation with cutting-edge integration technologies. Results Phys. 15, 102660 (2019)

    Google Scholar 

  • Yıldırım, Y., Biswas, A., Jawad, A.J.M., Ekici, M., Zhou, Q., Khan, S., Alzahrani, A.K., Belic, M.: Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results Phys. 16, 102913 (2020)

    Google Scholar 

  • Yin, X.J., Xu, L.Y., Yang, L.: Evolution and interaction of soliton solutions of Rossby waves in geophysical fluid mechanics. Nonlinear Dyn. 111, 12433–12445 (2023)

    Google Scholar 

  • Yokus, A.: Construction of different types of traveling wave solutions of the relativistic wave equation associated with the Schrödinger equation. Math. Model. Numer. Simul. Appl. 1(1), 24–31 (2021)

    Google Scholar 

  • Yokus, A., Baskonus, H.M.: Dynamics of traveling wave solutions arising in fiber optic communication of some nonlinear models. Soft Comput. 26(24), 13605–13614 (2022)

    Google Scholar 

  • Younas, U., Bilal, M., Sulaiman, T.A., Ren, J., Yusuf, A.: On the exact soliton solutions and different wave structures to the double dispersive equation. Opt. Quantum Electron. 54, 71 (2022)

    Google Scholar 

  • Younas, U., Bilal, M., Ren, J.: Diversity of exact solutions and solitary waves with the influence of damping effect in ferrites materials. J. Magn. Magn. Mater. 549, 168995 (2022)

    CAS  Google Scholar 

  • Younis, M., Seadawy, A.R., Bilal, M., Rehman, S.U., Latif, S., Rizvi, S.T.R.: Kinetics of phase separation in Fe-Cr- (X=Mo, Cu) ternary alloys—a dynamical wave study. Int. J. Mod. Phys. B 35(21), 2150220 (2021)

    MathSciNet  CAS  ADS  Google Scholar 

  • Younis, M., Younas, U., Bilal, M., Rehman, S.U., Rizvi, S.T.R.: Investigation of optical solitons with Chen–Lee–Liu equation of monomode fibers by five free parameters. Indian J. Phys. 96(5), 1539–1546 (2022)

    CAS  ADS  Google Scholar 

  • Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 065001 (2020)

    ADS  Google Scholar 

  • Zayed, E.M.E., Alngar, M.E.M.: Application of newly proposed sub-ODE method to locate chirped optical solitons to Triki–Biswas equation. Optik 207, 164360 (2020)

    ADS  Google Scholar 

  • Zhang, J.L., Wang, M.L., Wang, U.M., Fang, Z.D.: The improved F-expansion method and its applications. Phy. Lett. A 350, 103–9 (2006)

    CAS  ADS  Google Scholar 

  • Zhao, Z.: Backlund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev–Petviashvili equation. Appl. Math. Lett. 89, 103–10 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52071298), the Strategic Research and Consulting Project of Chinese Academy of Engineering (No. 2022HENYB05), the ZhongYuan Science and Technology Innovation Leadership Program (No. 214200510010). The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

MB: Conceptualization, methodology, software, writing-original draft, formal analysis. JR, ASAA: Investigation, visualization, acquisition, supervision, Validation. KHM, MI: Resources, acquisition, data curation, supervision, review and editing.

Corresponding author

Correspondence to Mustafa Inc.

Ethics declarations

Conflict of interest

We assure that none of the authors in this piece have competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilal, M., Ren, J., Alsubaie, A.S.A. et al. Dynamics of nonlinear diverse wave propagation to Improved Boussinesq model in weakly dispersive medium of shallow waters or ion acoustic waves using efficient technique. Opt Quant Electron 56, 21 (2024). https://doi.org/10.1007/s11082-023-05587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05587-x

Keywords

Navigation