Skip to main content

Advertisement

Log in

A compact dual-band hybrid dielectric resonator antenna for blood glucose sensing and wireless communication

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a compact dielectric resonator-based high gain dual-band hybrid antenna. The antenna is proposed to work in a dual ISM (industrial, scientific, and medical) band, i.e., at 2.40\(-\)2.48 GHz and 5.725\(-\)5.875 GHz. The designed antenna can work as a radiator in the lower band (2.37\(-\)2.49 GHz) and as a sensor in the upper band (5.34\(-\)6.00 GHz). The non-invasive blood glucose sensing application is chosen at a higher frequency band, and a lower band is chosen for wireless communication. From a single transmission feed line, both frequency bands are generated by the fundamental mode \({TM_{10}}\) of radiating slot and \({HEM_{11}}\) mode inside cylindrical DRA, respectively. The designed antenna is optimized and simulated to get the best possible results in terms of S-parameter, bandwidth, gain, radiation pattern, efficiency in a lower band, and sensitivity toward blood permittivity in a higher band. This work performs regression analysis and fasting experiments for blood glucose sensing. The link budget analysis is also done at different data rates for wireless communication. The Specific absorption rate (SAR) value is calculated in finger tissue to ensure safety. The simulated and measured results of the designed antenna suggest that it can be used for non-invasive blood glucose sensing and wireless communication applications. To the author’s knowledge, no antenna was reported prior for radiating as well as sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

Not applicable

References

  • Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Hoboken, NJ, USA (2016)

    Google Scholar 

  • Bruen, D., Delaney, C., Florea, L., Diamond, D.: Glucose sensing for diabetes monitoring: recent developments, Sensors, vol. 17, no. 8, (2017)

  • Cebedio, M.C., Rabioglio, L.A., Gelosi, I.E., Ribas, R.A., Uriz, A.J., Moreira, J.C.: Analysis and design of a microwave coplanar sensor for non-invasive blood glucose measurements. IEEE Sens. J. 20(18), 10572–10581 (2020)

    Article  CAS  ADS  Google Scholar 

  • Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics: I. Alternating current characteristics, J. Chem. Phys., vol. 9, (1941)

  • Ding, Y., Leung, K.W.: On the dual-band DRA-slot hybrid antenna. IEEE Trans. Antennas Propag. 57(3), 624–630 (2009)

    Article  ADS  Google Scholar 

  • Ebrahimi, A., Scott, J., Ghorbani, K.: Microwave reflective biosensor for glucose level detection in aqueous solutions. Sens. Actuator-Phys. 301, 111662 (2020). https://doi.org/10.1016/j.sna.2019.111662

    Article  CAS  Google Scholar 

  • Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, S., Lau, R.W. Gabriel, C.: The dielectric properties of biologicaltissue,Phys.Med.Biol.pp.2231-2293, (2004)

  • Hasan, Md N., Tamanna, S., Singh, Padam, N., Md, Rudramuni, M.: Cylindrical dielectric resonator antenna sensor for non-invasive glucose sensing application. 961-964. 10.1109/SPIN.2019.8711633 (2019)

  • Huang, S.Y., Yoshida, Y., Garcia, A., Chia, X., Mu, W.C., Meng, Y.S., Yu, W.: Microstrip line-based glucose sensorfor noninvasive continuous monitoring using the main field for sensing and multivariable crosschecking. IEEE Sens. J. 19, 535–547 (2019). https://doi.org/10.1109/JSEN.2018.2877691

    Article  CAS  ADS  Google Scholar 

  • Hurt, W.D.: Multiterm Debye dispersion relations for permittivity of muscle, IEEE Trans. Biomed. Eng., vol. BME- 32, no. 1, pp. 60-64, (1985)

  • IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz, in IEEE Std C95.1-2019 (Revision of IEEE Std C95.1-2005/ Incorporates IEEE Std C95.1-2019/Cor 1-2019) , vol., no., pp.1-312, 4 Oct. (2019), https://doi.org/10.1109/IEEESTD.2019.8859679.

  • International Diabetes Federation (IDF): Diabetes complications, https://www.idf.org/aboutdiabetes/complications, accessed: 2020-02-06

  • Iqbal, A., Alazemi, A.J., Khaddaj Mallat, N.: Slot-DRA-Based Independent Dual-Band Hybrid Antenna for Wearable Biomedical Devices, in IEEE Access, 7, pp. 184029-184037, (2019)

  • Jang, C., Park, J.K., Lee, H.J., Yun, G.H., Yook, J.G.: Temperature corrected fluidic glucose sensor based on microwave resonator, Sensors, vol. 18, no. 11, Nov. (2018)

  • Juan, C.G., Bronchalo, E., Potelon, B., Quendo, C., Ávila-Navarro, E., Sabater-Navarro, J.M.: Concentration measurement of microliter-volume water-glucose solutions using Q factor of microwave sensors. IEEE Trans. Instrum. Meas. 68, 2621–2634 (2019). https://doi.org/10.1109/TIM.2018.2866743

    Article  CAS  ADS  Google Scholar 

  • Juan, C.G., Potelon, B., Quendo, C., Bronchalo, E.: Microwave planar resonant solutions for glucose concentration sensing: a systematic review. Appl. Sci. 11, 7018 (2021). https://doi.org/10.3390/app11157018

    Article  CAS  Google Scholar 

  • Kamruzzaman, M.M., Hossin, M.A., Alshammari, N., et al.: A wide-band flexible body-worn antenna for bio-medical and 5G applications to serve communities of smart cities. Opt. Quant. Electron. 55, 548 (2023). https://doi.org/10.1007/s11082-023-04816-7

    Article  Google Scholar 

  • Keyrouz, S., Caratelli, D.: Dielectric Resonator Antennas: Basic Concepts, Design Guidelines, and Recent Developments at Millimeter-Wave Frequencies, International Journal of Antennas and Propagation, vol. 2016, Article ID 6075680, 20 pages, (2016)

  • Kiani, Sina, Rezaei, Pejman, Fakhr, Mina: Real-time measurement of liquid permittivity through label-free meandered microwave sensor. IETE J. Res. (2023). https://doi.org/10.1080/03772063.2023.2231875

    Article  Google Scholar 

  • Kiani, S., Rezaei, P., Fakhr, M.: Dual-Frequency Microwave Resonant Sensor to Detect Noninvasive Glucose-Level Changes Through the Fingertip, in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-8, (2021), Art no. 6004608, https://doi.org/10.1109/TIM.2021.3052011.

  • Kiani, S., Rezaei, P., Navaei, M.: Dual-sensing and dual-frequency microwave SRR sensor for liquid samples permittivity detection, Measurement, Volume 160,(2020),107805,ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2020.107805

  • Kiani, S., Rezaei, P., Navaei, M., Abrishamian, M.S.: Microwave Sensor for Detection of Solid Material Permittivity in Single/Multilayer Samples With High Quality Factor, in IEEE Sensors Journal, vol. 18, no. 24, pp. 9971-9977, 15 Dec.15, (2018) https://doi.org/10.1109/JSEN.2018.2873544.

  • Kiani, S., Rezaei, P.: Microwave substrate integrated waveguide resonator sensor for non-invasive monitoring of blood glucose concentration: Low cost and painless tool for diabetics, Measurement,Volume 219,(2023),113232,ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2023.113232

  • Kracolak, T., Moreland, E.C., Topsakal, E.: Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuos glucose monitoring. Microw. Optical Tech. Lett. 55(5), 1160–1164 (2013)

    Article  Google Scholar 

  • Lekha, S.: Real-time non-invasive detection and classification of diabetes using modified convolution neural network. IEEE J. Biomed. Health Inform. 22(5), 1630–1636 (2017)

    Article  PubMed  Google Scholar 

  • Li, Y., Lu, Z., Yang, L.: CPW-fed slot antenna for medical wearable applications. IEEE Access 7, 42107–42112 (2019)

    Article  Google Scholar 

  • Lin, Tamar, Gal, Avner, Mayzel, Yulia, Horman, Keren, Bahartan, Karnit: Non-invasive glucose monitoring: a review of challenges and recent advances. Curr Trends Biomedical Eng & Biosci 6(5), 1–8 (2017)

    Article  Google Scholar 

  • Lin, Tamar, Gal, Avner, Mayzel, Yulia, Horman, Keren, Bahartan, Karnit: Non-invasive glucose monitoring: a review of challenges and recent advances. Curr Trends Biomedical Eng and Biosci 6(5), 1–8 (2017)

    Article  Google Scholar 

  • Liu, Y.-X.G., Xiao, S.: Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications. IEEE Trans. Antennas Propag. 62(5), 2407–2417 (2014)

    Article  ADS  Google Scholar 

  • Mishra, P.K., Tripathi, V.S.: A miniature dielectric loaded wide band circularlypolarized implantable antenna with low specificabsorption rate for biomedical applications.IntJ RF Microw Comput Aided Eng. 32(8):e23227.(2022) https://doi.org/10.1002/mmce.2322712.

  • Navaei, M., Rezaei, P., Kiani, S.: Microwave split ring resonator sensor for determination of the fluids permittivity with measurement of human milk samples. Radio Sci. 57(7), 1–11 (2022). https://doi.org/10.1029/2022RS007435

    Article  Google Scholar 

  • Navaei, M., Rezaei, P., Kiani, S.: Measurement of low-loss aqueous solutions permittivity with high detection accuracy by a contact and free-label resonance microwave sensor. Int. J. Commun Syst 36, e5417 (2023)

    Article  Google Scholar 

  • Navaei, M., Rezaei, P., Kiani, S.: A symmetric bar chart-shape microwave sensor with high Q-factor for permittivity determination of fluidics. International Journal of Microwave and Wireless Technologies 1–9,(2023). https://doi.org/10.1017/S1759078723000053

  • Nimehvari Varcheh, H., Rezaei, P., Kiani, S.: A modified Jerusalem microstrip filter and its complementary for low phase noise X-band oscillator. International Journal of Microwave and Wireless Technologies 1–10,(2023). https://doi.org/10.1017/S1759078723000703

  • Omer, A.E., Shaker, G., Safavi-Naeini, S., et al.: Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration. Sci. Rep. 10, 15200 (2020). https://doi.org/10.1038/s41598-020-72114-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omer, A.E., Shaker, G., Safavi-Naeini, S., Shubair, R.M., Ngo, K., Alquié, G., Deshours, F., Kokabi, H.: Multiple-cell microfluidic dielectric resonator for liquid sensing applications. IEEE Sens. J. 21, 6094–6104 (2021). https://doi.org/10.1109/JSEN.2020.3041700

    Article  CAS  ADS  Google Scholar 

  • Petosa, A., Ittipiboon, A., Antar, Y.M.M., Roscoe, D., Cuhasi, M.: Recent advances in dielectric-resonator antenna technology. IEEE Antennas Propag. Mag. 40(3), 35–48 (1998)

    Article  ADS  Google Scholar 

  • Raj, S., Tripathi, S., Upadhyay, G., Tripathi, S.S., Tripathi, V.S.: An electromagnetic band gap-based complementary split ring resonator loaded patch antenna for glucose level measurement. IEEE Sens. J. 21(20), 22679–22687 (2021). https://doi.org/10.1109/JSEN.2021.3107462

    Article  CAS  ADS  Google Scholar 

  • Sethi, W.T., Ashraf, M.A., Alshebeili, S.A., Issa, K.: Thumb positioning analysis of new elliptical-shaped microwave sensors for non-invasive glucose monitoring , IEEE ELECTRONICS LETTERS 3rd May (2018) Vol. 54 No. 9 pp. 553-554

  • Sharma, A., Sarkar, A., Biswas, A., Akhtar, M.J.: Compact dual-band hybrid dielectric resonator antenna loaded with magnetic-LC resonator. J. Electromagn. Appl. 32(10), 1298–1305 (2018)

    Article  Google Scholar 

  • Singh, T., Mishra, P., Pal, A., Tripathi, V.: A planar microwave sensor for noninvasive detection of glucose concentration using regression analysis. International Journal of Microwave and Wireless Technologies 1–11,(2023). https://doi.org/10.1017/S1759078723000545

  • Tajima, T., Okabe, Y., Tanaka, Y., Seyama, M.: Linearization technique for dual-wavelength CW photoacoustic detection of glucose. IEEE Sens. J. 17(16), 5079–5086 (2017)

    Article  CAS  ADS  Google Scholar 

  • Topsakal, E., Karacolak, T., Moreland, E.C.: Glucose dependent dielectric properties of blood plasma, 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, pp. 1-4, (2011)

  • Turgul, V., Kale, I.: Simulating the effects of skin thickness and fingerprints to highlight problems with non-invasive rf blood glucose sensing from fingertips. IEEE Sens. J. 17(22), 7553–7560 (2017)

    Article  ADS  Google Scholar 

  • Valeri, C., Pozzilli, P., Leslie, D.: Glucose control in diabetes. Diabetes Metab. Res. Rev. 20(S2), S1–S8 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Xia: Member, IEEE, and Qinwei Li, A non-invasive measurement of blood glucose concentration by uwb microwave spectrum. IEEE Antennas Wirel. Propag. Lett. 16, 1040–1043 (2017)

    Article  ADS  Google Scholar 

  • Yilmaz, T., Foster, R., Hao, Y.: Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels, Diagnostics, vol. 9, no. 1, (2019)

  • Yunos, M.F.A.M., Manczak, R., Guines, C., Mansor, A.F.M., Mak, W.C., Khan, S., Ramli, N.A., Pothier, A., Nordin, A.N.: RF Remote blood glucose sensor and a microfluidic vascular phantom for sensor validation. Biosensors (Basel). (2021) ;11(12):494. https://doi.org/10.3390/bios11120494.PMID: 34940251; PMCID: PMC8699327

  • Zidane, M.A., Rouane, A., Hamouda, C., Amar, H.: Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water. Sens. Actuator A Phys. 321, 112601 (2021). https://doi.org/10.1016/j.sna.2021.112601

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Piyush Kumar Mishra, contributed in antenna design, simulated and measured results analysis and paper writing. Vijay Shanker Tripathi, contributed in technical inputs and improved the grammar part of this research article.

Corresponding author

Correspondence to Piyush Kumar Mishra.

Ethics declarations

Conflict of interest

Not applicable

Ethical Approval

‘Not applicable’

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P.K., Tripathi, V.S. A compact dual-band hybrid dielectric resonator antenna for blood glucose sensing and wireless communication. Opt Quant Electron 56, 22 (2024). https://doi.org/10.1007/s11082-023-05579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05579-x

Keywords

Navigation