Skip to main content
Log in

Optical Heisenberg antiferromagnetic electroosmotic magnetic torque microscale

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, we present Heisenberg antiferromagnetic \(\tau _{\phi \left( \mathbf {\alpha }\right) },\) \(\tau _{\phi \left( \textbf{t}\right) },\) \(\tau _{\phi \left( \textbf{s}\right) }\) magnetic \(\mathbf {t-}\)torque phase microscales with Heisenberg antiferromagnetic \(\phi \left( \mathbf {\alpha }\right) ,\) \(\phi \left( \textbf{t}\right) ,\) \(\phi \left( \textbf{s}\right) \) in spherical Heisenberg space. Then, we present Heisenberg electroosmotic \(\tau _{\phi \left( \mathbf {\alpha }\right) },\tau _{\phi \left( \textbf{t}\right) },\tau _{\phi \left( \textbf{s}\right) }\) magnetic \( \mathbf {t-}\)torque density with Heisenberg antiferromagnetic \(\phi \left( \mathbf {\alpha }\right) ,\phi \left( \textbf{t}\right) ,\phi \left( \textbf{s}\right) \). Thus, we obtain microfluidic Heisenberg antiferromagnetic \(\tau _{\phi \left( \mathbf {\alpha }\right) },\tau _{\phi \left( \textbf{t}\right) },\tau _{\phi \left( \textbf{s} \right) }\) magnetic \(\mathbf {t-}\)torque phase microscale in spherical Heisenberg space. Finally, we design Heisenberg microfluidic \(\tau _{\phi \left( \mathbf {\alpha }\right) },\tau _{\phi \left( \textbf{t}\right) },\tau _{\phi \left( \textbf{s}\right) }\) magnetic \(\mathbf {t-}\)torque phase microscale in spherical Heisenberg space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Abouraddy, A.F., Bayindir, M., Benoit, G., Hart, S.D., Kuriki, K., Orf, N., Shapira, O., Sorin, F., Temelkuran, B., Fink, Y.: Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 6, 336 (2007)

    CAS  PubMed  ADS  Google Scholar 

  • Ahmed, H., Hashim, A.: Geometry optimization, optical and electronic characteristics of novel PVA/PEO/SiC structure for electronics applications. Silicon 13(8), 2639–2644 (2021)

    CAS  Google Scholar 

  • Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    CAS  ADS  Google Scholar 

  • Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    CAS  PubMed  ADS  Google Scholar 

  • Balakrishnan, R., Dandoloff, R.: The Schrodinger equation as a moving curve. Phys. Lett. A 260, 62 (1999)

    MathSciNet  CAS  ADS  Google Scholar 

  • Balakrishnan, R., Bishop, R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64, 2107 (1990)

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  • Balakrishnan, R., Bishop, R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47, 3108 (1993)

    CAS  ADS  Google Scholar 

  • Bell, T.E.: Optical computing: a field in flux. IEEE Spectr. 23(8), 34–38 (1986)

    ADS  Google Scholar 

  • Berry, M.V., Klein, S.: Geometric phases from stacks of crystal plates. J. Mod. Opt. 43, 165–180 (1996)

    MathSciNet  ADS  Google Scholar 

  • Berry, M.V., McDonald, K.T.: Exact and geometrical optics energy trajectories in twisted beams. J. Opt. A Pure Appl. Opt. 10(3), 035005 (2008)

    ADS  Google Scholar 

  • Biener, G., Niv, A., Kleiner, V., Hasman, E.: Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Opt. Lett. 27, 1875–1877 (2002)

    PubMed  ADS  Google Scholar 

  • Cao, Q., Liu, M., Wang, Z., Han, X., Li, L.: Dynamic motion analysis of magnetic particles in microfluidic systems under an external gradient magnetic field. Microfluid. Nanofluid. 21(2), 24 (2017)

    Google Scholar 

  • Cao, Q., Li, Z., Wang, Z., Han, X.: Rotational motion and lateral migration of an elliptical magnetic particle in a microchannel under a uniform magnetic field. Microfluid. Nanofluid. 22, 3 (2018)

    Google Scholar 

  • Dandoloff, R., Zakrzewski, W.J.: Parallel transport along a space curve and related phases. J. Phys. A Math. Gen. 22(11), L461 (1989)

    MathSciNet  ADS  Google Scholar 

  • Dholakia, K., Zemánek, P.: Colloquium: gripped by light: optical binding. Rev. Mod. Phys. 82, 1767–1791 (2010)

    ADS  Google Scholar 

  • Dong, C., Page, A.G., Yan, W., Nguyen-Dang, T., Sorin, F.: Microstructured multimaterial fibers for microfluidic sensing. Adv. Mater. Technol. 4(10), 1900417 (2019)

    CAS  Google Scholar 

  • Erb, R.M., Martin, J.J., Soheilian, R., Pan, C., Barber, J.R.: Actuating soft matter with magnetic torque. Adv. Funct. Mater. 26(22), 3859–3880 (2016)

    CAS  Google Scholar 

  • Fink, Y., Winn, J., Fan, S., Chen, C., Michel, J., Joannopoulos, J., Thomas, E.: A dielectric omnidirectional reflector. Science 282, 1679 (1998)

    CAS  PubMed  ADS  Google Scholar 

  • Furlani, E.P., Ng, K.C.: Analytical model of magnetic nanoparticle capture in the microvasculature. Phys. Rev. E 73(6), 061919 (2006)

    CAS  ADS  Google Scholar 

  • Garcia de Andrade, L.C.: Vortex filaments in MHD. Phys. Scr. 73(5), 484 (2006)

    MathSciNet  CAS  ADS  Google Scholar 

  • Gürbüz, N.: The differantial formula of Hasimoto transformation in Minkowski 3-space. Int. J. Math. Math. Sci. 2005, 542381 (2005)

    Google Scholar 

  • Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51(3), 477–485 (1972)

    MathSciNet  ADS  Google Scholar 

  • Jajal, N., Mazumder, S.: A hybrid solver for the radiative transfer equation in nongray combustion gases. Comput. Therm. Sci. Int. J. 15(6), 1–18 (2023)

    Google Scholar 

  • Jones, R.C.: A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. 31, 488–493 (1941)

    ADS  Google Scholar 

  • Körpinar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Opt. Int. J. Light Electron. Opt. 219, 165134 (2020)

    Google Scholar 

  • Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)

    ADS  Google Scholar 

  • Körpınar, T.: Optical electromotive force with Heisenberg spherical ferromagnetic spin. Optik 245, 167521 (2021)

    ADS  Google Scholar 

  • Körpinar, T., Demirkol, R.C.: Gravitational magnetic curves on 3D Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 15, 1850184 (2018)

    MathSciNet  Google Scholar 

  • Körpinar, T., Demirkol, R.C.: Frictional magnetic curves in 3D Riemannian manifolds. Int. J. Geom. Methods Mod. Phys. 15, 1850020 (2018)

    MathSciNet  Google Scholar 

  • Körpınar, T., Demirkol, R.C.: Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold. J. Mod. Opt. 66(8), 857–867 (2019)

    MathSciNet  ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C.: Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations. Optik 200, 163334 (2020)

    ADS  Google Scholar 

  • Korpinar, T., Körpınar, Z.: Timelike spherical magnetic \(\mathbb{S} _{ \textbf{N} }\) flux flows with Heisenberg sphericalferromagnetic spin with some solutions. Optik 242, 166745 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Timelike spherical magnetic flux flows with Heisenberg spherical ferromagnetic spin with some solutions. Optik (2021). https://doi.org/10.1016/j.ijleo.2021.166745

    Article  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021)

    ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical spherical electromotive density with some fractional applications with Laplace transform in spherical Heisenberg space \(\mathbb{S} _{\mathbb{H} }^{2}\). Optik 245, 167596 (2021)

    ADS  Google Scholar 

  • Körpınar, Z., Korpinar, T.: Optical hybrid electric and magnetic \( \textbf{B} _{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)

    ADS  Google Scholar 

  • Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space. Int. J. Geom. Methods Modern 16(8), 1950117 (2019)

    MathSciNet  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations. Eur. Phys. J. D 73, 203 (2019)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling along with coiled optical fiber on the unit 2-sphere S\(^{2}\). Rev. Mex. Fis. 65, 626 (2019)

    MathSciNet  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Rev. Mex. Fis. 66(4), 431 (2020)

    MathSciNet  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Optik 217, 164561 (2020)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \(\mathbb{S} _{Heis^{3}}^{2}\). Optik 247, 167937 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Asil, V.: New approach for optical electroostimistic phase with optical quasi potential energy. Optik 251, 168291 (2022)

    ADS  Google Scholar 

  • Kugler, M., Shtrikman, S.: Berry’s phase, locally inertial frames, and classical analogues. Phys. Rev. D 37(4), 934 (1988)

    MathSciNet  CAS  ADS  Google Scholar 

  • Lamb, G.L.: Solitons on moving space curves. J. Math. Phys. 18, 1654 (1977)

    MathSciNet  ADS  Google Scholar 

  • Murugesh, S., Balakrishnan, R.: New connections between moving curves and soliton equations. Phys. Lett. A 290, 81 (2001)

    MathSciNet  CAS  ADS  Google Scholar 

  • Reddy, M.G., Rani, M.S., Kumar, K.G., Prasannakumar, B.C., Lokesh, H.J.: Hybrid dusty fluid flow through a Cattaneo-Christov heat flux model. Phys. A Stat. Mech. Appl. 551, 123975 (2020)

    MathSciNet  Google Scholar 

  • Rehman, N., Uzair, M., Allauddin, U.: An optical-energy model for optimizing the geometrical layout of solar photovoltaic arrays in a constrained field. Renew. Energy 149, 55–65 (2020)

    Google Scholar 

  • Satija, I.I., Balakrishan, R.: Geometric phases in twisted strips. Phys. Lett. A 373(39), 3582 (2009)

    CAS  ADS  Google Scholar 

  • Schief, W.K., Rogers, C.: The Da Rios system under a geometric constraint: the Gilbarg problem. J. Geom. Phys. 54(3), 286–300 (2005)

    MathSciNet  ADS  Google Scholar 

  • Smit, J.: The spontaneous Hall effect in ferromagnetics I. Physica 21, 877 (1955)

    CAS  ADS  Google Scholar 

  • Tao, G., Stolyarov, A.M., Abouraddy, A.F.: Multi-material fibers. Int. J. Appl. Glass Sci. 3, 349 (2012)

    CAS  Google Scholar 

  • Tomita, A., Chiao, Y.: Observation of Berry’s topological phase by use of an optical fiber. Phys. Rev. Lett. 57, 937 (1986)

    CAS  PubMed  ADS  Google Scholar 

  • Vieira, V.R., Horley, P.P.: The Frenet-Serret representation of the Landau-Lifshitz-Gilbert equation. J. Phys. A Math. Theor. 45(6), 065208 (2012)

    MathSciNet  ADS  Google Scholar 

  • Waqas, H., Muhammad, T., Noreen, S., Farooq, U., Alghamdi, M.: Cattaneo-Christov heat flux and entropy generation on hybrid nanofluid flow in a nozzle of rocket engine with melting heat transfer. Case Stud. Therm. Eng. 28, 101504 (2021)

    Google Scholar 

  • Wassmann, F., Ankiewicz, A.: Berry’s phase analysis of polarization rotation in helicoidal fibers. Appl. Opt. 37, 3902 (1998)

    CAS  PubMed  ADS  Google Scholar 

  • Yamashita, O.: Effect of the geometrical phase shift on the spin and orbital angular momenta of light traveling in a coiled optical fiber with optical activity. Opt. Commun. 285, 3740 (2012)

    CAS  ADS  Google Scholar 

  • Yamashita, O.: Geometrical phase shift of the extrinsic orbital angular momentum density of light propagating in a helically wound optical fiber. Opt. Commun. 285, 3061 (2012)

    CAS  ADS  Google Scholar 

  • Zygelman, B.: Appearance of gauge potentials in atomic collision physics. Phys. Lett. A 125, 476–481 (1987)

    CAS  ADS  Google Scholar 

Download references

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study; All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Talat Körpinar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. Optical Heisenberg antiferromagnetic electroosmotic magnetic torque microscale. Opt Quant Electron 56, 46 (2024). https://doi.org/10.1007/s11082-023-05568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05568-0

Keywords

Navigation