Skip to main content
Log in

Utilization of F8BT in refractive index sensor for urea treated urine detection

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work, "Poly(9,9-di-noctylfluorene-alt-benzothiadiazole) (F8BT)" is used for the first time in a multilayered SPR sensor. The gold (Au), F8BT, black phosphorous (BP), and urease enzyme layers are added to the BK7 prism to assist high light efficiency, activating surface plasmons, minimizing damping effect, increasing absorption, and urea detection, respectively. The performance of the sensor in the visible wavelength region is examined using the transfer matrix technique (TMM). The optimized thickness of Au and F8BT layers are 45 nm and 10 nm, respectively. Four alternative sensor configurations are examined based on the material layers utilized in the presence of urea-treated urine sample concentrations of 0.625 gm/dl, 1.25 gm/dl, 2.5 gm/dl, 5 gm/dl, and 10 gm/dl. Sensitivity, quality factor, and detection accuracy calculations are done to evaluate each structure's performance. A maximum sensitivity of 240 \(deg/RIU\), QF of 25.92 \(/RIU\), and DA of 0.301 are achieved for the Au/F8BT/BP/Urease sensor construction. Additionally, a two-dimensional finite difference time domain (FDTD) method-based tool is used to study the field confinement in the metallic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abernethy, G., Higgs, K.: Rapid detection of economic adulterants in fresh milk by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1288, 10–20 (2013)

    Google Scholar 

  • Aguado, R., Santos, A., Vallejos, S., Valente, A.J.M.: Paper-based probes with visual response to vapors from nitroaromatic explosives: polyfluorenes and tertiary amines. Molecules 27, 2900 (2022)

    Google Scholar 

  • Ahmad, S. I.: Studies on some biophysical aspects of human renal excretory fluid, Ph.D. dissertation, Department of Physics, Jawaharlal Nehru Technological University, Hyderabad, India, (2010)

  • Amin, S., Tahira, A., Solangi, A., Beni, V., Morante, J.R., Liu, X., Falhman, M., Mazzaro, R., Ibupoto, Z.H., Vomiero, A.: A practical non-enzymatic urea sensor based on NiCo2O4 nanoneedles. RSC Adv. 9, 14443–14451 (2019)

    ADS  Google Scholar 

  • Ansari, A.A., Gil, S.S.: Eutrophication: causes, consequences and control. Springer, The Netherlands (2014)

    Google Scholar 

  • Ansari, S.G., Fouad, H., Shin, H.S., Ansari, Z.A.: Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique. Chem. Biol. Interact. 242, 45–49 (2015)

    Google Scholar 

  • Begum, K.D., Mottola, H.A.: Nylon shavings enzyme reactor for batch determination of urea. Anal. Biochem. 142(1), 1–6 (1984)

    Google Scholar 

  • Bhatia, P., Gupta, B.D.: Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sens. Actuators, B Chem. 161(1), 434–438 (2012)

    Google Scholar 

  • Blakeley, R.L., Hinds, J.A., Kunze, H.E., Webb, E.C., Zerner, B.: Jack Bean Urease (EC3.5.1.5). Demonstration of a carbamoyl-transfer reaction and inhibition by hydroxamic acids. Biochemistry 8(5), 1991–2000 (1969)

    Google Scholar 

  • Boggs, B.K., King, R.L., Botte, G.G.: Urea electrolysis: direct hydrogen production from urine. Chem. Commun. 32, 4859–4861 (2009)

    Google Scholar 

  • Borges, B.G., Veiga, A.G., Gioti, M., Laskarakis, A., Tzounis, L., Logothetidis, S., Rocco, M.L.M.: Surface, interface and electronic properties of F8:F8BT polymeric thin films used for organic light-emitting diode applications. Polym. Int. 67(6), 691–699 (2018)

    Google Scholar 

  • Bose, A., Biswas, K.: Perfomance study of urease-PMMA-based aqueous urea sensor. IEEE Sens. J. 17(21), 6850–6858 (2017)

    ADS  Google Scholar 

  • Bremner, J. M.: Recent research on problems in the use of urea as a nitrogen fertilizer, in Nitrogen Economy in Tropical Soils, N. Ahmad, Ed. Springer, 1996, pp. 321–329

  • Deng, H.H., Hong, G.L., Lin, F.L., Liu, A.L., Xia, X.H., Chen, W.: Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 915, 74–80 (2016)

    Google Scholar 

  • Cheng, L., Zheng, W., Li, L. and Zhang, Y.N.: Highly-Sensitive SPR Urea Biosensor Based on Urease Immobilized in Metal-Organic Zeolite Framework," 2021 19th International Conference on Optical Communications and Networks (ICOCN), Qufu, China, 2021, pp. 1–3

  • Guilbault, G.G., Nagy, G.: Improved urea electrode. Anal. Chem. 45(2), 417–419 (1973)

    Google Scholar 

  • Guilbault, G.G., Tarp, M.A.: A specific enzyme electrode for urea. Anal. Chim. Acta 73(2), 355–365 (1974)

    Google Scholar 

  • IPCS INCHEM, OECD Screening Information DataSet (SIDS) High Production Volume Chemicals. [Online]. Available: http://www.inchem.org/documents/sids/sids/57136.pdf (1996)

  • Jamil, N. A., Menon, P. S., Said, F. A., Tarumaraja, K. A., Mei, G. S., and Majlis, B. Y.: Graphene-based surface plasmon resonance urea biosensor using Kretschmann configuration, 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Batu Ferringhi, Malaysia, 2017, pp. 112-115

  • Jamil, N. A., Khairulazdan, N. B., Menon, P. S., Md Zain, A. R., Hamzah, A. A., and Majlis, B. Y.: Graphene-MoS2 SPR-based biosensor for urea detection, 2018 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 2018, pp. 1-4

  • Jha, S.N., Jaiswal, P., Borah, A., Gautam, A.K., Srivastava, N.: Detection and quantification of urea in milk using attenuated total reflectance-fourier transform infrared spectroscopy. Food Bioprocess Technol. 8, 926–933 (2015)

    Google Scholar 

  • Karki, B., Uniyal, A., Pal, A., Srivastava, V.: Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. Int. J. Opt. 2022, 1–10 (2022a)

    Google Scholar 

  • Karki, B., Jha, A., Pal, A., et al.: Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt. Quant. Electron. 54, 595 (2022b)

    Google Scholar 

  • Karki, B., Uniyal, A., Chauhan, B., et al.: Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J. Comput. Electron. 21, 445–452 (2022c)

    Google Scholar 

  • Karki, B., Ansari, G., Uniyal, A., et al.: PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J. Comput. Electron. 22, 106–115 (2023a)

    Google Scholar 

  • Karki, B., Ramya, K.C., Devi, S., et al.: Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Opt. Quant. Electron. 54, 451 (2022d)

    Google Scholar 

  • Karki, B., Salah, N.H., Srivastava, G. et al.: A simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, Barium Titanate, and Cerium Oxide, Plasmonics (2023)

  • Khanbeigi, R.A., et al.: Surface Chemistry of photoluminescent F8BT conjugated polymer nanoparticles determines protein corona formation and internalization by phagocytic cells. Biomacromol 16, 1–10 (2015)

    Google Scholar 

  • Kirstein, D., Kirstein, L., Scheller, F.: Enzyme electrode for urea with amperometric indication: Part I—Basic principle. Biosensors 1(1), 117–130 (1985)

    Google Scholar 

  • Kulys, J.J., Gureviciene, V.V., Laurinavicius, V.A., Jonuska, A.V.: Urease sensors based on differential antimony electrodes. Biosensors 2(1), 35–44 (1986)

    Google Scholar 

  • Laurinavicius, V., Razumiene, J., Gureviciene, V.: Bioelectrochemical conversion of urea on carbon black electrode and application. IEEE Sens. J. 13(6), 2208–2213 (2013)

    ADS  Google Scholar 

  • Li, X., et al.: Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2, 031002 (2015a)

    Google Scholar 

  • Stredansky, M., Pizzarello, A., Stredanska, S., Miertuš, S.: Amperometric pH-sensing biosensors for urea, penicillin, and oxalacetate. Anal. Chim. Acta 415(1), 151–157 (2000)

    Google Scholar 

  • Ma, W.J., Luo, C.H., Lin, J.L., Chou, S.H., Chen, P.H., Syu, M.J., Kuo, S.H., Lai, S.C.: A portable low-power acquisition system with a urease bioelectrochemical sensor for potentiometric detection of urea concentrations. Sensors 16(4), 474 (2016)

    ADS  Google Scholar 

  • Mana, H., Spohn, U.: Selective flow injection procedures for the determination of nitrogen containing analytes by gasdialytic-fluorimetric detection of enzymatically generated ammonia. Anal. Chim. Acta 325, 93–104 (1996)

    Google Scholar 

  • Islam, A., et al.: Design and analysis of GO coated high sensitive tunable SPR sensor for OATR spectroscopic biosensing applications. IEEE Access 10, 103496–103508 (2022)

    Google Scholar 

  • Menon, P.S., Said, F.A., Mei, G.S., Berhanuddin, D.D., Umar, A.A., Shaari, S., et al.: Urea and creatinine detection on nano-laminated gold thin film using Kretschmann-based surface plasmon resonance biosensor. PLoS ONE 13(7), e0201228 (2018a)

    Google Scholar 

  • Menon, P.S., et al.: Urea and creatinine detection on nano-laminated gold thin film using Kretschmann-based surface plasmon resonance biosensor. PLoS ONE 13(7), e0201228 (2018b)

    Google Scholar 

  • Menon, P. S. et al.: Kretschmann based Surface Plasmon Resonance for Sensing in Visible Region, 2019 IEEE 9th International Nanoelectronics Conferences (INEC), Kuching, Malaysia, 2019, pp. 1-6

  • Menon, P.S., Said, F.A., Mei, G.S., Mohamed, M.A., Zain, A.R.M., Shaari, S., Majlis, B.Y.: High Sensitivity Au-based Kretschmann surface plasmonresonance sensor for urea detection. Sains Malaysiana 48(6), 1179–1185 (2019)

    Google Scholar 

  • Miglior, F., Sewalem, A., Jamrozik, J., Bohmanova, J., Lefebre, D.M., Motore, R.K.: Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. J. Dairy Sci. 90(5), 2468–2479 (2007)

    Google Scholar 

  • Mondal, S., Sangaranarayanan, M.V.: A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sens. Actuators B 177, 478–486 (2013)

    Google Scholar 

  • Nguyen, N.S., Das, G., Yoon, H.H.: Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea. Biosens. Bioelectron. 77, 372–377 (2016)

    Google Scholar 

  • Nie, F., Wang, N., Xu, P., Zheng, J.: Determination of urea in milk based on n-bromosuccinimide–dichlorofluorescein postchemilumine-scence method. J. Food Drug Anal. 25, 472–477 (2017)

    Google Scholar 

  • Nilges, T., Kersting, M., Pfeifer, T.: A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 181, 1707–1711 (2008)

    ADS  Google Scholar 

  • Paliwal, A., Tomar, M., Gupta, V.: Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix. J. Biomed. Opt. 21(8), 87006 (2016)

    Google Scholar 

  • Patton, C.J., Crouch, S.R.: Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal. Chem. 49(3), 464–469 (1977)

    Google Scholar 

  • Robinson, S., Dhanlaksmi, N.: Photonic crystal based biosensor for the detection of glucose concentration in urine. Photonic Sensors 7, 11–19 (2017)

    ADS  Google Scholar 

  • Shalini, J., Sankaran, K.J., Lee, C.-Y., Tai, N.-H., Lin, I.: An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode. Biosens. Bioelectron. 56, 64–70 (2014)

    Google Scholar 

  • Singh, T.I., Singh, P., Karki, B.: Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics 18, 1173–1180 (2023)

    Google Scholar 

  • Tinoco, V.S., Barrera, A.A., Estrada, O.V., Cervantes, J.M., Como, N.H., Olguin, L.F., Valenzuela, A.G.: Fast and accurate optical determination of gold-nanofilms thickness. Opt. Laser Technol. 134, 106604 (2021)

    Google Scholar 

  • Trivedi, U.B., Lakshminarayana, D., Kothari, I.L., Patel, N.G., Kapse, H.N., Makhija, K.K., Patel, P.B., Panchal, C.J.: Potentiometric biosensor for urea determination in milk. Sens. Actuators B 140, 260–266 (2009)

    Google Scholar 

  • Vasimalla, Y., Pradhan, H.S.: Modeling of a novel K5 prism-based surface plasmon resonance sensor for urea detection employing aluminum arsenide. J. Opt. 52, 242–253 (2023)

    Google Scholar 

  • Vasimalla, Y., Pradhan, H.S., Pandya, R.J.: Sensitivity enhancement of the SPR biosensor for Pseudomonas bacterial detection employing a silicon-barium titanate structure. Appl. Opt. 60, 5588–5598 (2021)

    ADS  Google Scholar 

  • Vasimalla, Y., Pradhan, H.S.: High-performance fiber-optic-based SPR sensor for DNA hybridization using black phosphorus-tungsten disulfide hybrid structure. JOSA B. 39(1), 324–331 (2022)

    ADS  Google Scholar 

  • Vikas, Gupta, S., Tejavath, K., et al.: Urea detection using bio-synthesized gold nanoparticles: an SPR/LSPR based sensing approach realized on optical fiber. Opt. Quant. Electron. 52, 278 (2020)

    Google Scholar 

  • Vlasov, Y.G., Laurinavicius, V.A., Tarantov, Y.A., Bratov, A.V., Gureviciene, V.V., Jonuska, A.V., Rozga, R.J., Gecis, V.M.: Urea sensor based on a pH-sensitive field transistor. J. Anal. Chem. (moscow) 44(9), 1651–1653 (1989)

    Google Scholar 

  • Vostiar, I., Tkac, J., Sturdic, E., Gemeiner, P.: Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe. Bioelectrochemistry 56(1), 113–115 (2002)

    Google Scholar 

  • Wang, J.H., Tarr, D.A.: On the mechanism of urease action. J. Amer. Chem. Soc. 77(23), 6205–6206 (1955)

    Google Scholar 

  • Xie, W.Q., Yu, K.X., Gong, Y.X.: Rapid and quantitative determination of urea in milk by reaction headspace gas chromatography. Microchem. J. 147, 838–841 (2019)

    Google Scholar 

  • Yan, X., Biao, P.J., Bin, W.H., Jian, W.: Improved performance of polymer light-emitting diodes with an electron transport emitter by post-annealing. Chin. Phys. Lett. 26, 097801 (2009)

    ADS  Google Scholar 

  • Yan, X., Rahman, S., Rostami, M., Tabasi, Z.A., Khan, F., Alodhayb, A., Zhang, Y.: Carbon quantum dot-incorporated chitosan hydrogel for selective sensing of Hg2+ ions: synthesis, characterization, and density functional theory calculation. ACS Omega 6, 23504–23514 (2021)

    Google Scholar 

  • Zhai, T., Niu, L., Cao, F., Tong, F., Songtao, L., Wang, M., Liu, H.: A RGB random laser on an optical fiber facet. RSC Adv. 7(72), 45852–45855 (2017)

    ADS  Google Scholar 

  • Zhu, G., Cheng, L., Qi, R., et al.: A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor. Microchim. Acta 187, 72 (2020)

    Google Scholar 

Download references

Funding

Funding is not available for this work.

Author information

Authors and Affiliations

Authors

Contributions

LS and YV have written the manuscript text. PP and NKM have done the simulation and analysis of the structure. RK has finalized the manuscript.

Corresponding authors

Correspondence to Lokendra Singh or Prakash Pareek.

Ethics declarations

Conflict of interest

Authors disclose that there is no conflict of interest for any author position or corresponding authors.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Vasimalla, Y., Pareek, P. et al. Utilization of F8BT in refractive index sensor for urea treated urine detection. Opt Quant Electron 55, 1289 (2023). https://doi.org/10.1007/s11082-023-05567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05567-1

Keywords

Navigation