Skip to main content
Log in

Performance analysis for UOWC transmission system using NRZ, AMI, and CSRZ modulation schemes

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, three different modulation formats; namely non return to zero (NRZ), alternate mark inversion (AMI), and carrier compressed return to zero (CSRZ) are used in an underwater optical wireless communication (UOWC) system. A laser diode (LD) source operating at 532 nm is used. A comparison of transmission performance using these modulation schemes in the UOWC system are preferred in terms of received optical power, bit error rate (BER), Q-factor, and eye diagrams at 10 Gbps data rate. Additionally, real underwater environments such as pure sea (PS), clear ocean (CO), coastal sea (CS), harbor I (HI), and harbor II (HII) are considered. The simulation findings indicate that using the NRZ modulation scheme in UWOC system achieves the best performance, while the worst performance is observed when CSRZ is utilized. Further, the low attenuation caused by PS results in a longer underwater distance with higher received power and lower BER. At BER \(\sim {10}^{-9}\), and received power of \(\sim\) − 21 dBm, the underwater spans of 28 m for PS, 18.6 m for CO, 11.7 m for CS, and 4.06 m for HII are obtained when NRZ line coding is employed. Furthermore, at the same BER and received power, these underwater ranges are decreased to 26.3 m, 17.8 m, 11.3 m, and 3.96 m for PS, CO, CS, and HII, respectively, when CSRZ modulation format is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of data and materials

The data used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abd El-Mottaleb, S.A., Métwalli, A., ElDallal, T.A., Hassib, M., Fayed, H.A., Aly, M.H.: Performance evaluation of PDM/SAC-OCDMA-FSO communication system using DPS code under fog, dust and rain. Opt. Quant. Electron. 54, 750 (2022)

    Article  Google Scholar 

  • Abd El-Mottaleb, S.A., Singh, M., Atieh, A., Aly, M.H.: OCDMA transmission-based underwater wireless optical communication system: performance analysis. Opt. Quant. Electron. 55, 465 (2023)

    Article  Google Scholar 

  • Akyildiz, I.F., Pompili, D., Melodia, T.: Challenges for efficient communication in underwater acoustic sensor networks. ACM SIGBED Rev. 1(2), 3–8 (2004)

    Article  Google Scholar 

  • Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3, 257–279 (2005)

    Article  Google Scholar 

  • Al Hammadi, M.M., Islam, M.J.: Performance evaluation of underwater wireless optical CDMA system for different water types. Photon Netw. Commun. Netw. Commun. 39, 246–254 (2020)

    Article  Google Scholar 

  • Ali, M.A.A. and Khalid Rahi, S.: Line of Sight (LoS) underwater wireless optical communication based on LED. 2018 9th International Symposium on Telecommunications (IST), Tehran, Iran, pp. 270–274, 17–19 Dec. (2018)

  • Alipour, A., Mir, A.: On the performance of blue–green waves propagation through underwater optical wireless communication system. Photon Netw. Commun. 36(3), 309–315 (2018)

    Article  Google Scholar 

  • Anu, S., Sharma Ajay, K., Kaler, R.S.: Simulation of high capacity 40 Gb/s long haul DWDM system using different modulation formats and dispersion compensation schemes in the presence of Kerr’s effect. Optik 121, 739–749 (2010)

    Article  ADS  Google Scholar 

  • Arnon, S.: Underwater optical wireless communication network. J. Opt. Eng. 49(1), 015001–015006 (2010)

    Article  ADS  Google Scholar 

  • Dickey, T., Lewis, M., Chang, G.: Optical oceanography recent advances and future directions using global remote sensing and in situ observations. Rev. Geophys. 44(1), RG1001 (2006)

    Article  ADS  Google Scholar 

  • Doniec, M.; Rus, D.: Bidirectional optical communication with AquaOptical II. In Proceedings of IEEE International Conference on Communication Systems (IEEE, 2010), Singapore, pp. 390–394, 17–19 November (2010)

  • Doniec, M.; Vasilescu, I.; Chitre, M.; Detweiler, C.; Hoffmann-Kuhnt,M.; Rus, D.: AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication. In Proc. IEEEOCEANSConf., Biloxi,MS, USA, pp. 1–6, 26–29 (2009)

  • Doniec, M.; Detweiler,C.; Vasilescu, I.; Rus, D.: Using optical communication for remote underwater robot operation. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Taipei, Taiwan, pp. 4017–4022, 18–22 (2010)

  • Gabriel, C., Khalighi, M.A., Bourennane, S., Léon, P., Rigaud, V.: Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 5(1), 1–12 (2013)

    Article  Google Scholar 

  • Haltrin, V.I.: Chlorophyll-based model of seawater optical properties. Appl. Opt. 38(33), 6826–6832 (1999)

    Article  ADS  Google Scholar 

  • Hanson, F., Radic, S.: High bandwidth underwater optical communication. Appl. Optics 47(2), 277–283 (2008)

    Article  ADS  Google Scholar 

  • Hodzic, A.: Investigations of high bit rate optical transmission systems employing a channel data rate of 40 Gb/s. Ph.D. Thesis, Berlin Univ., Germany, (2004)

  • Kaushal, H., Kaddoum, G.: Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016)

    Article  Google Scholar 

  • Kulhandjian, H.: Inside out underwater communications. J. Ocean Technol. 9, 104–105 (2014)

    Google Scholar 

  • Liu, X., Yi, S., Zhou, X., Fang, Z., Qiu, Z.-J., Hu, L., Cong, C., Zheng, L., Liu, R., Tian, P.: 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express 25, 27937–27947 (2017)

    Article  ADS  Google Scholar 

  • Lloret, J., Sendra, S., Ardid, M., Rodrigues, J.J.P.C.: Underwater wireless sensor communications in the 2.4 GHz ISM frequency band. Sensors 12(4), 4237–4264 (2012)

    Article  ADS  Google Scholar 

  • Lucky, S. and Chaubey, V.K.: Design and simulation of CSRZ modulated 40 Gbps DWDM system in presence of Kerr non linearity. In IEEE 2012 International Conference on Wireless and Optical Communications Networks (WOCN), pp.1–5, 20–22 (2012)

  • Mobley, C.D.: Light and water: radiative transfer in natural waters. Academic, New York (1994)

    Google Scholar 

  • Moghaddasi, M., Mamdoohi, G., Noor, A.S.M., Mahdi, M.A., Anas, S.B.A.: Development of SAC-OCDMA in FSO with multi-wavelength laser source. Opt. Commun. 356, 282–289 (2015)

    Article  ADS  Google Scholar 

  • Oubei, H.M., Li, C., Park, K.-H., Ng, T.K., Alouini, M.-S., Ooi, B.S.: 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. Opt. Express 23, 20743 (2015)

    Article  ADS  Google Scholar 

  • Palmeiro, A.; Martín, M.; Crowther, I.; M. Rhodes, M.: Underwater radio frequency communications. In Proc. IEEE OCEANS Conf., Santander, Spain, pp. 1–8, 6–9 (2011)

  • Prieur, L., Sathyendranath, S.: An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particular materials. Limn. Oceanogr. 26(4), 671–689 (1981)

    Article  Google Scholar 

  • Saeed, N., Celik, A., Al-Naffouri, T.Y., Alouini, M.S.: Underwater optical wireless communications, networking, and localization: a survey. Ad Hoc Netw. 94, 1–40 (2019)

    Article  Google Scholar 

  • Schirripa Spagnolo, G., Cozzella, L., Leccese, F.: Underwater optical wireless communications: overview. Sensors 20, 2261 (2020)

    Article  ADS  Google Scholar 

  • Shaw, A.; Al-Shamma’a, A.i.; Wylie, S.R.; and Toal, D.: Experimental investigations of electromagnetic wave propagation in seawater. In Proc. Eur. Microw. Conf., Manchester, U.K., pp. 572–575, 10–15 Sept. (2006)

  • Shen, C., Guo, Y., Oubei, H.M., Ng, T.K., Liu, G., Park, K.H., Ho, K.T., Alouini, M.S., Ooi, B.S.: 2.0-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Express 24(22), 25502–25509 (2016)

    Article  ADS  Google Scholar 

  • Singh, M., Atieh, A., Grover, A., Barukab, O.: Performance analysis of 40 Gb/s free space optics transmission based on orbital angular momentum multiplexed beams. Alexandria Eng. J. 61, 5203–5212 (2022a)

    Article  Google Scholar 

  • Singh, M., Singh, M.L., Singh, R.: Performance enhancement of 112 Gbps UWOC link by mitigating the air bubbles induced turbulence with coherent detection MIMO DP-16QAM and advanced digital signal processing. Optik 259, 168986 (2022b)

    Article  ADS  Google Scholar 

  • Singh, M., Atieh, A., Aly, M.H., et al.: UOWC transmission system based on OAM beams: performance evaluation. Opt. Quant. Electron. 55, 832 (2023)

    Article  Google Scholar 

  • Smith, R.C., Baker, K.S.: Optical properties of the clearest natural waters. Appl. Opt. 20(2), 177–184 (1981)

    Article  ADS  Google Scholar 

  • Vavoulas, A., Sandalidis, H.G., Varoutas, D.: Underwater optical wireless networks: a κ-connectivity analysis. IEEE J. Oceanic Eng. 39(4), 801–809 (2014)

    Article  ADS  Google Scholar 

  • Wang, P., Li, C., Xu, Z.: A cost-efficient real-time 25 Mb/s system for LED-UOWC: design, channel coding, FPGA implementation, and characterization. J. Lightw. Technol. 36(13), 2627–2637 (2018)

    Article  ADS  Google Scholar 

  • Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J.: A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 19, 204–238 (2017)

    Article  Google Scholar 

  • Zielinski, A., Yoon, Y., Wu, L.: Performance analysis of digital acoustic communication in a shallow water channel. IEEE J. Ocean. Eng. 20(4), 293–299 (1995)

    Article  ADS  Google Scholar 

Download references

Funding

The authors did not receive any funds to support this research.

Author information

Authors and Affiliations

Authors

Contributions

MS, AA, MHA, and SAA have directly participated in the planning, execution, and analysis of this study. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Moustafa H. Aly.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Atieh, A., Aly, M.H. et al. Performance analysis for UOWC transmission system using NRZ, AMI, and CSRZ modulation schemes. Opt Quant Electron 55, 1259 (2023). https://doi.org/10.1007/s11082-023-05559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05559-1

Keywords

Navigation