Skip to main content
Log in

Analytical treatment with the Nucci reduction technique on the p-forced nonlinear Klein–Gordon equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The main purpose of this study is to reach the exact solutions of the p-forced nonlinear Klein–Gordon equation by using a novel method called the Nucci reduction method. The nonlinear Klein–Gordon equation finds applications in various real-world scenarios. One notable application is in the field of nonlinear optics, where the equation is used to study the propagation of intense laser beams through nonlinear media. Nonlinear Klein–Gordon equations are also employed in condensed matter physics to model the behavior of superconductors and superfluids. Additionally, these equations have been used in cosmology to study the dynamics of scalar fields during the early universe and their role in inflationary models. The nonlinear Klein–Gordon equation has proven to be a valuable tool in understanding and predicting the behavior of scalar fields in a wide range of physical systems. Some exact solutions with the first integrals of the proposed model have been successfully achieved utilizing the Nucci reduction technique. In order to observe the strengths of the method, three-dimensional and density graphs of the solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbulut, A., Mirzazadeh, M., Hashemi, M.S., Hosseini, K., Salahshour, S., Park, C.: Triki-biswas model: Its symmetry reduction, Nucci’s reduction and conservation laws. Int. J. Mod. Phys. B 37(07), 2350063 (2023)

    ADS  Google Scholar 

  • Alhami, R., Alquran, M.: Extracted different types of optical lumps and breathers to the new generalized stochastic potential-kdv equation via using the cole-hopf transformation and hirota bilinear method. Opt. Quant. Electron. 54(9), 553 (2022)

    Google Scholar 

  • Alharbi, A.R., Almatrafi, M.B.: New exact and numerical solutions with their stability for ito integro-differential equation via Riccati-Bernoulli sub-ode method. J. Taibah Univer. Sci. 14(1), 1447–1456 (2020)

    Google Scholar 

  • Alharbi, A.R., Almatrafi, M.: Exact solitary wave and numerical solutions for geophysical kdv equation. J. King Saud Univer.-Sci. 34(6), 102087 (2022)

    Google Scholar 

  • Ali, K.K., Wazwaz, A.-M., Osman, M.: Optical soliton solutions to the generalized nonautonomous nonlinear schrödinger equations in optical fibers via the sine-gordon expansion method. Optik 208, 164132 (2020)

    ADS  Google Scholar 

  • Ali, M., Alquran, M., BaniKhalid, A.: Symmetric and asymmetric binary-solitons to the generalized two-mode kdv equation: novel findings for arbitrary nonlinearity and dispersion parameters. Results Phys. 45, 106250 (2023)

    Google Scholar 

  • Ali, T.A.A., Xiao, Z., Jiang, H., Li, B.: A class of digital integrators based on trigonometric quadrature rules. IEEE Trans. Ind. Electr. (2023). https://doi.org/10.1109/TIE.2023.3290247

    Article  Google Scholar 

  • Almatrafi, M.: Construction of closed form soliton solutions to the space-time fractional symmetric regularized long wave equation using two reliable methods. Fractals (2023). https://doi.org/10.1142/S0218348X23401606

    Article  Google Scholar 

  • Almatrafi, M.B.: Solitary wave solutions to a fractional model using the improved modified extended tanh-function method. Fractal Fract. 7(3), 252 (2023)

    MathSciNet  Google Scholar 

  • Almatrafi, M., Alharbi, A.: New soliton wave solutions to a nonlinear equation arising in plasma physics. CMES-Comput. Model. Eng. Sci. (2023). https://doi.org/10.32604/cmes.2023.027344

    Article  Google Scholar 

  • Alquran, M.: Physical properties for bidirectional wave solutions to a generalized fifth-order equation with third-order time-dispersion term. Results Phys. 28, 104577 (2021)

    Google Scholar 

  • Alquran, M.: New interesting optical solutions to the quadratic-cubic schrodinger equation by using the kudryashov-expansion method and the updated rational sine-cosine functions. Opt. Quant. Electron. 54(10), 666 (2022)

    Google Scholar 

  • Alquran, M.: Classification of single-wave and bi-wave motion through fourth-order equations generated from the ito model. Phys. Scr. 98(8), 085207 (2023)

    ADS  Google Scholar 

  • Alquran, M., Al Smadi, T.: Generating new symmetric bi-peakon and singular bi-periodic profile solutions to the generalized doubly dispersive equation. Opt. Quant. Electr. 55(8), 736 (2023)

    Google Scholar 

  • Alquran, M., Jaradat, I.: Identifying combination of dark-bright binary-soliton and binary-periodic waves for a new two-mode model derived from the (2+ 1)-dimensional nizhnik-novikov-veselov equation. Mathematics 11(4), 861 (2023)

    Google Scholar 

  • Attia, N., Akgül, A.: A reproducing kernel hilbert space method for nonlinear partial differential equations: applications to physical equations. Phys. Scr. 97(10), 104001 (2022)

    ADS  Google Scholar 

  • Bellazzini, J., Ghimenti, M., Le Coz, S.: Multi-solitary waves for the nonlinear Klein–Gordon equation. Comm. Partial Diff. Eqs. 39(8), 1479–1522 (2014)

    MathSciNet  Google Scholar 

  • Chu, Y.-M., Inc, M., Hashemi, M.S., Eshaghi, S.: Analytical treatment of regularized prabhakar fractional differential equations by invariant subspaces. Comput. Appl. Math. 41(6), 271 (2022)

    MathSciNet  Google Scholar 

  • Gagnon, L., Winternitz, P.: Lie symmetries of a generalised nonlinear schrodinger equation: I the symmetry group and its subgroups. J. Phys. A: Math. General 21(7), 1493 (1988)

    MathSciNet  ADS  Google Scholar 

  • Gazizov, R.K., Kasatkin, A.A.: Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput. Math. Appl. 66(5), 576–584 (2013)

    MathSciNet  Google Scholar 

  • Grillakis, M.: Linearized instability for nonlinear schrödinger and Klein–Gordon equations. Commun. Pure Appl. Math. 41(6), 747–774 (1988)

    MathSciNet  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, ii. J. Funct. Anal. 94(2), 308–348 (1990)

    MathSciNet  Google Scholar 

  • Gülşen, S., Yao, S.-W., Inc, M.: Lie symmetry analysis, conservation laws, power series solutions, and convergence analysis of time fractional generalized drinfeld-sokolov systems. Symmetry 13(5), 874 (2021)

    ADS  Google Scholar 

  • Gulsen, S., Hashemi, M.S., Alhefthi, R., Inc, M., Bicer, H.: Nonclassical symmetry analysis and heir-equations of forced burger equation with time variable coefficients. Comput. Appl. Math. 42(5), 221 (2023)

    MathSciNet  Google Scholar 

  • Guo, C., Hu, J., Hao, J., Celikovsky, S., Hu, X.: Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions. Kybernetika 59(3), 342–364 (2023a)

    MathSciNet  Google Scholar 

  • Guo, C., Hu, J., Wu, Y., Čelikovskỳ, S.: Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with practical state constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 70(9), 3746–3758 (2023b)

    Google Scholar 

  • Hashemi, M.S.: A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative. Chaos, Solitons & Fractals 152, 111367 (2021)

    MathSciNet  Google Scholar 

  • Hashemi, M.S.: Numerical study of the one-dimensional coupled nonlinear sine-gordon equations by a novel geometric meshless method. Eng. Comput. 37(4), 3397–3407 (2021)

    Google Scholar 

  • Hashemi, M.S., Baleanu, D.: Lie symmetry analysis of fractional differential equations. CRC Press, Cambridge (2020)

    Google Scholar 

  • Hosseini, K., Sadri, K., Mirzazadeh, M., Chu, Y., Ahmadian, A., Pansera, B., Salahshour, S.: A high-order nonlinear schrödinger equation with the weak non-local nonlinearity and its optical solitons. Results Phys. 23, 104035 (2021)

    Google Scholar 

  • Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Optical solitons to the resonance nonlinear schrödinger equation by sine-gordon equation method. Superlatt. Microstruct. 113, 541–549 (2018)

    CAS  ADS  Google Scholar 

  • Iqbal, M.A., Wang, Y., Miah, M.M., Osman, M.S.: Study on date-jimbo-kashiwara-miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal Fract. 6(1), 4 (2021)

    Google Scholar 

  • Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Results Phys. 49, 106520 (2023)

    Google Scholar 

  • Jeanjean, L., Le Coz, S.: Instability for standing waves of nonlinear Klein–Gordon equations via mountain-pass arguments. Trans. Am. Math. Soc. 361(10), 5401–5416 (2009)

    MathSciNet  Google Scholar 

  • Jin, H.-Y., Wang, Z.-A.: Boundedness, blowup and critical mass phenomenon in competing chemotaxis. J. Differential Equations 260(1), 162–196 (2016)

    MathSciNet  ADS  Google Scholar 

  • Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)

    MathSciNet  Google Scholar 

  • Li, H., Peng, R., Wang, Z.-A.: On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms. SIAM J. Appl. Math. 78(4), 2129–2153 (2018)

    MathSciNet  Google Scholar 

  • Li, D., Ge, S.S., Lee, T.H.: Fixed-time-synchronized consensus control of multiagent systems. IEEE Trans. Control Netw. Syst. 8(1), 89–98 (2020)

    MathSciNet  CAS  Google Scholar 

  • Liu, P., Shi, J., Wang, Z.-A.: Pattern formation of the attraction-repulsion keller-segel system. Discrete Contin. Dyn. Syst. Ser. B 18(10), 2597–2625 (2013)

    MathSciNet  Google Scholar 

  • Ma, Q., Meng, Q., Xu, S.: Distributed optimization for uncertain high-order nonlinear multiagent systems via dynamic gain approach. IEEE Trans. Syst., Man, Cybernet.: Syst. 85(7), 4351–4357 (2023)

    Google Scholar 

  • Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W., Osman, M.: Application of new kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electron. 55(1), 8 (2023)

    Google Scholar 

  • Martel, Y., Merle, F.: Instability of solitons for the critical generalized korteweg-de vries equation. Geometric Funct. Anal. GAFA 11, 74–123 (2001)

    MathSciNet  Google Scholar 

  • Moraes, G.E.B., de Loreno, G.: Cnoidal waves for the quintic Klein–Gordon and Schrödinger equations: existence and orbital instability. J. Math. Anal. Appl. 513(1), 126203 (2022)

    Google Scholar 

  • Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.: Propagation of solitary and periodic waves to conformable ion sound and Langmuir waves dynamical system. Opt. Quant. Electron. 55(10), 868 (2023)

    Google Scholar 

  • Nasreen, N., Younas, U., Sulaiman, T., Zhang, Z., Lu, D.: A variety of m-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023)

    Google Scholar 

  • Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear schrödinger equation by using extended and modified rational expansion method. J. Opt. Phys. Mater. Nonlinear (2023). https://doi.org/10.1142/S0218863523500583

    Article  Google Scholar 

  • Natali, F., Cardoso, E., Jr.: Stability properties of periodic waves for the Klein–Gordon equation with quintic nonlinearity. Appl. Math. Comput. 224, 581–592 (2013)

    MathSciNet  Google Scholar 

  • Natali, F.M.A., Ferreira, A.P.: Stability and instability of periodic standing wave solutions for some Klein–Gordon equations. J. Math. Anal. Appl. 347(2), 428–441 (2008)

    MathSciNet  Google Scholar 

  • Neves, A.: Floquet’s theorem and stability of periodic solitary waves. J. Dyn. Diff. Equat. 21(3), 555–565 (2009)

    MathSciNet  Google Scholar 

  • Nucci, M.C., Leach, P.: The determination of nonlocal symmetries by the technique of reduction of order. J. Math. Anal. Appl. 251(2), 871–884 (2000)

    MathSciNet  Google Scholar 

  • Pava, J.A., Natali, F., et al.: (Non) linear instability of periodic traveling waves: Klein–Gordon and kdv type equations. Adv. Nonlinear Anal. 3(2), 95 (2014)

    MathSciNet  Google Scholar 

  • Sahadevan, R., Prakash, P.: On lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations. Chaos, Solitons & Fractals 104, 107–120 (2017)

    MathSciNet  ADS  Google Scholar 

  • Shatah, J.: Stable standing waves of nonlinear Klein–Gordon equations. Commun. Math. Phys. 91, 313–327 (1983)

    MathSciNet  ADS  Google Scholar 

  • Shatah, J., Strauss, W.: Instability of nonlinear bound states. Commun. Math. Phys. 100(2), 173–190 (1985)

    MathSciNet  ADS  Google Scholar 

  • Wang, J., Liang, F., Zhou, H., Yang, M., Wang, Q.: Analysis of position, pose and force decoupling characteristics of a 4-ups/1-rps parallel grinding robot. Symmetry 14(4), 825 (2022)

    ADS  Google Scholar 

  • Wu, Y.: Instability of the standing waves for the nonlinear Klein–Gordon equations in one dimension. Trans. Am. Math. Soc. 376(06), 4085–4103 (2023)

    MathSciNet  Google Scholar 

  • Xia, F.-L., Jarad, F., Hashemi, M.S., Riaz, M.B.: A reduction technique to solve the generalized nonlinear dispersive mk (m, n) equation with new local derivative. Results Phys. 38, 105512 (2022)

    Google Scholar 

  • Yao, S.-W., Gulsen, S., Hashemi, M.S., İnç, M., Bicer, H.: Periodic hunter-saxton equation parametrized by the speed of the Galilean frame: its new solutions, Nucci’s reduction, first integrals and lie symmetry reduction. Results Phys. 47, 106370 (2023)

    Google Scholar 

  • Yokus, A., Iskenderoglu, G., Kaya, D.: Application of some nonclassical methods for p-defocusing complex klein-gordon equation. Opt. Quant. Electron. 55(5), 403 (2023)

    Google Scholar 

  • Zafar, A., Raheel, M., Asif, M., Hosseini, K., Mirzazadeh, M., Akinyemi, L.: Some novel integration techniques to explore the conformable m-fractional schrödinger-hirota equation. J. Ocean Eng. Sci. 7(4), 337–344 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization; Methodology: MSH; Formal analysis and investigation: SG; Writing - original draft preparation, Writing - review and editing: MI

Corresponding authors

Correspondence to M. S. Hashemi or Mustafa Inc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M.S., Gulsen, S., Inc, M. et al. Analytical treatment with the Nucci reduction technique on the p-forced nonlinear Klein–Gordon equation. Opt Quant Electron 56, 34 (2024). https://doi.org/10.1007/s11082-023-05538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05538-6

Keywords

Navigation