Skip to main content
Log in

Advanced refractive index sensor based on photonic crystal fiber with elliptically split cores

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This article describes a photonic crystal fiber (PCF) with two cores as refractive index sensor that was built using COMSOL Multiphysics software by considering elliptical shaped air holes within the cladding. The two cores of the PCF are formed by an elliptical air hole at center, which represents two independent waveguides. The approach is intrinsically suited to investigate the sensor's performance, a full-vector Finite Element Method technique is employed. According to mathematical evidence, the proposed PCF based sensor has maximum sensitivities 9000 nm/RIU and 10,000 nm/RIU for x-polarized and y-polarized respectively. The sensing range of analyte is 1.35–1.39. The proposed sensor that has excellent sensitivity reveals an unmatched capacity for detecting chemicals, agents that cause cancer, biomolecules, and other analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  • Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  • Bise R. T., Trevor D. J.: Sol–gel derived microstructured fiber: fabrication and characterization. In: Optical Fiber Communication Conferencep. OWL6, Optical Society of America, Washington, DC, USA (2005)

  • Bozolan, A., Gerosa, R.M., De Matos, C.J.S., Romero, M.A.: Temperature sensing using colloidal-core photonic crystal fiber. IEEE Sens. J. 12, 195–200 (2012)

    Article  ADS  Google Scholar 

  • Chakma, S., Khalek, M.A., Paul, B.K., Ahmed, K., Hasan, M.R., Bahar, A.N.: Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens. Bio-Sens. Res. 18, 7–12 (2018)

    Article  Google Scholar 

  • Chaudhary, V.S., Kumar, D.: Au–TiO2 coated photonic crystal fiber based SPR refractometric sensor for detection of cancerous cells. IEEE Trans. NanoBiosci. 22, 562–569 (2022b). https://doi.org/10.1109/TNB.2022.3219104

    Article  Google Scholar 

  • Chaudhary, V.S., Kumar, D., Kumar, S.: SPR-assisted photonic crystal fiber-based with improved performance. IEEE Trans. Plasma Sci. 49, 3803–3810 (2021a)

    Article  ADS  Google Scholar 

  • Chaudhary, V.S., Kumar, D., Kumar, S.: Gold-immobilized photonic crystal fiber-based SPR biosensor for detection of malaria disease in human body. IEEE Sens. J. 21, 17800–17807 (2021b)

    Article  ADS  Google Scholar 

  • Chaudhary, V.S., Kumar, D., Mishra, G.P.: Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sens. J. 22, 8474–8481 (2022a)

    Article  ADS  Google Scholar 

  • Chaudhary, V.S., Kumar, D., Pandey, B.P., Kumar, S.: Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a review. IEEE Sens. J. 23, 1012–1023 (2023)

    Article  ADS  Google Scholar 

  • Dash, J.N., Jha, R.: SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photonics Technol. Lett. 26, 595–598 (2014)

    Article  ADS  Google Scholar 

  • De, M., Gangopadhyay, T.K., Singh, V.K.: Prospects of photonic crystal fiber as physical sensor: an overview. Sensors 19(3), 464 (2019)

    Article  ADS  Google Scholar 

  • Dhara, P., Singh, V.K.: Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm. Opt. Fiber Technol. 21, 154–159 (2015)

    Article  ADS  Google Scholar 

  • Ebendorff-Heidepriem, H., Schuppich, J., Dowler, A., Lima- Marques, L., Monro, T.M.: 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Express 4(8), 1494–1504 (2014)

    Article  ADS  Google Scholar 

  • Fan, Z.: Surface plasmon resonance refractive index sensor based on photonic crystal fiber covering nano-ring gold film. Opt. Fiber Technol. 50, 194–199 (2019)

    Article  ADS  Google Scholar 

  • Fan, Z., Li, S., Liu, Q., An, G., Chen, H., Li, J., Chao, D., Li, H., Zi, J., Tian, W.: High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 7, 1–9 (2015)

    Article  Google Scholar 

  • Fuerbach, A., Steinvurzel, P., Bolger, J.A., Nulsen, A., Eggleton, B.J.: Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers. Opt. Lett. 30, 830–832 (2005)

    Article  ADS  Google Scholar 

  • Ghazanfari, A., Li, W., Leu, M.C., Hilmas, G.E.: A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017)

    Google Scholar 

  • Hossain, M.M., Hossain, M.B., Amin, M.Z.: Small coupling length with a low confinement loss dual-core liquid infiltrated photonic crystal fiber coupler. OSA Contin. 1, 953–962 (2018)

    Article  Google Scholar 

  • Huang, W.-P.: Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A 11, 963–983 (1994)

    Article  ADS  Google Scholar 

  • Islam, M.S., Sultana, J., Rifat, A.A., Dinovitser, A., Wai-Him Ng, B., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 18, 4073–4080 (2018)

    Article  ADS  Google Scholar 

  • Islam, M.S., Cordeiro, C.M.B., Dorraki, M., Dinovitser, A.: A Hi-Bi ultra-sensitive surface plasmon. IEEE Access 7, 79085–79094 (2019a)

    Article  Google Scholar 

  • Islam, M.S., Sultana, J., Ahmmed Aoni, R., Habib, M.S., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Opt. Lett. 44, 1134–1137 (2019b)

    Article  ADS  Google Scholar 

  • Islam, M. S., Sultana, J., Cordeiro, C. M. B., Cruz, A. L. S., DInovitser, A., Ng, B. W. H.,Abbott, D.: Broadband characterization of glass and polymer materials using THz-TDS, Int. Conf. Infrared, Millimeter, Terahertz Waves, IRMMW-THz (2019)

  • Khamis, M.A., Sevilla, R., Ennser, K.: Large mode area Pr3+-Doped chalcogenide PCF design for high efficiency mid-IR laser. IEEE Photonics Technol. Lett. 30, 825–828 (2018)

    Article  ADS  Google Scholar 

  • Knight, J.C.: Photonic crystal fibres. Nature 424(6950), 847–851 (2003)

    Article  ADS  Google Scholar 

  • Li, J., Wang, R., Wang, J.Y., Liu, Y.: Highly birefringent photonic crystal fibers with selectively liquid-filled structure in cladding. Opt. Eng. 50, 025001 (2011)

    Article  ADS  Google Scholar 

  • Mahfuz, M.A., Hossain, M.A., Haque, E., Hai, N.H., Namihira, Y., Ahmed, F.: Dual core photonic crystal fiber based plasmonic RI sensor in the visible to near IR operating band. IEEE Sens. J. 20, 1–1 (2020)

    Article  Google Scholar 

  • Mathews, S., Farrell, G., Semenova, Y.: Directional electric field sensitivity of a liquid crystal infiltrated photonic crystal fiber. IEEE Photonics Technol. Lett. 23, 408–410 (2011)

    Article  ADS  Google Scholar 

  • Phan Huy, M.C., Laffont, G., Dewynter, V., Ferdinand, P.: Tilted fiber bragg grating photowritten in microstructured optical fiber for improved refractive index measurement. Opt. Express 14, 10359–10370 (2006)

    Article  Google Scholar 

  • Quintero, S.M.M., Martelli, C., Braga, A.M.B., Valente, L.C.G., Kato, C.C.: Magnetic field measurements based on terfenol coated photonic crystal fibers. Sensors 11, 11103–11111 (2011)

    Article  ADS  Google Scholar 

  • Rindorf, L., Bang, O.: Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing. J. Opt. Soc. Am. B 25, 310–324 (2008a)

    Article  ADS  Google Scholar 

  • Rindorf, L., Bang, O.: Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Opt. Lett. 33, 563–565 (2008b)

    Article  ADS  Google Scholar 

  • Saitoh, K., Sato, Y., Koshiba, M.: Coupling characteristics of dual-core photonic crystal fiber couplers. Opt. Express 11, 3188–3195 (2003)

    Article  ADS  Google Scholar 

  • Singh, L., Singh, R., Zhang, B., Kaushik, B.K., Kumar, S.: Localized surface plasmon resonance based hetero-core optical fiber sensor structure for the detection of L-cysteine. IEEE Trans. Nanotechnol. 19, 201–208 (2020)

    Article  ADS  Google Scholar 

  • Sun, B., Chen, M.-Y., Zhang, Y.-K., Yang, J., Yao, J., Cui, H.-X.: Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing. Opt. Express 19, 4091–4100 (2011)

    Article  ADS  Google Scholar 

  • Walther, M., Fischer, B.M., Ortner, A., Bitzer, A., Thoman, A., Helm, H.: Chemical sensing and imaging with pulsed terahertz radiation. Anal. Bioanal. Chem. 397, 1009–1017 (2010)

    Article  Google Scholar 

  • Wang, Z., Taru, T., Birks, T.A., Knight, J.C., Liu, Y., Du, J.: Coupling in dual-core photonic bandgap fibers: theory and experiment. Opt. Express 15, 4795–4803 (2007)

    Article  ADS  Google Scholar 

  • Wu, D.K.C., Kuhlmey, B.T., Eggleton, B.J.: Ultra-sensitive photonic crystal fiber refractive index sensor. Opt. Infobase Conf. Pap. 34, 322–324 (2009)

    Google Scholar 

  • Wu, J., Li, S., Wang, X., Shi, M., Feng, X., Liu, Y.: Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance. Appl. Opt. 57, 4002–4007 (2018)

    Article  ADS  Google Scholar 

  • Yan, G., Zhang, A.P., Ma, G., Wang, B., Kim, B., Im, J., He, S., Chung, Y.: Fiber-optic acetylene gas sensor based on microstructured optical fiber bragg gratings. IEEE Photonics Technol. Lett. 23, 1588–1590 (2011)

    Article  ADS  Google Scholar 

  • Yan, X., Fu, R., Cheng, T., Li, S.: A highly sensitive refractive index sensor based on a v-shaped photonic crystal fiber with a high refractive index range. Sensors 21(11), 3782 (2021)

    Article  ADS  Google Scholar 

  • Yan, X., Wang, H.:Study of a refractive index sensor based on dual-core photonic crystal fiber. In: 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, pp. 7791-7795 (2017)

  • Zhang, P., Zhang, J., Yang, P., Dai, S., Wang, X., Zhang, W.: Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol. 26, 176–179 (2015)

    Article  ADS  Google Scholar 

  • Zhu, G., Wang, Y., Wang, Z., Singh, R., Marques, C., Wu, Q., Kaushik, B.K., Jha, R., Zhang, B., Kumar, S.: Localized plasmon-based multicore fiber biosensor for acetylcholine detection. IEEE Trans. Instrum. Meas. 71, 1–9 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the participants who contributed to this research.

Funding

This work of Santosh Kumar was supported by the Double-Hundred Talent Plan of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Contributions

RP: Methodology, Writing—review & editing. DK and BPP: Supervision, Writing—original draft. VSC, DS and SK: review & editing.

Corresponding author

Correspondence to Dharmendra Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Animal research

No bad Impact on animal.

Consent to participate

All authors is agreed to submit the paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pravesh, R., Kumar, D., Pandey, B.P. et al. Advanced refractive index sensor based on photonic crystal fiber with elliptically split cores. Opt Quant Electron 55, 1205 (2023). https://doi.org/10.1007/s11082-023-05516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05516-y

Keywords

Navigation