Skip to main content
Log in

Design of a compact super wideband all-textile antenna for radio frequency energy harvesting and wearable devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this article, a compact super-wideband flexible textile antenna is proposed. It operates over an extremely broad frequency range from 3.16 to 50 GHz. The proposed design is characterized by its simple geometry, consisting of an offset rectangular patch, which is incorporated with three slots to enhance its performance, while a circular parasitic patch is positioned on the opposite side of the substrate. The proposed antenna prototype is fabricated on a footprint of 30 mm × 25 mm × 1 mm, which measures an electrical dimension of 0.31λ0 × 0.26λ0 × 0.012λ0 at 3.16 GHz. As per measurements, a wide bandwidth of 15.82:1 from 3.16 to 50 GHz is achieved with a peak gain of 7.70 dBi at 23.05 GHz. Furthermore, the ADS software is employed to create and analyze the equivalent circuit model of the designed antenna whose simulation studies are executed using CST software. The suggested antenna's overall performance is described by investigating the effects of structural bending and also proximity to the human body. Moreover, it provides acceptable values of specific absorption rate, ensuring lower absorption, which are under the safety standard limits for RF exposure. The measured results correlate with simulated results. Owing to its simple topology, compact size, super-wideband behavior, and high gain, endorse its suitability for low-power requirement applications in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability (software application or custom code)

Implemented through Computer Simulation Tool (CST) software.

References

  • Abutarboush, H.F.: Silver nanoparticle inkjet-printed multiband antenna on synthetic paper material for flexible devices. Alex. Eng. J. 61(8), 6349–6355 (2022)

    Google Scholar 

  • Adami, S.E., Proynov, P., Hilton, G.S., Yang, G., Zhang, C., Zhu, D., Stark, B.H.: A flexible 2.45 GHz power harvesting wristband with net system output from− 24.3 dBm of RF power. IEEE Trans. Microw. Theory Tech. 66(1), 380–395 (2017)

    ADS  Google Scholar 

  • Aghoutane, B., Das, S., Ghzaoui, M.E., Madhav, B.T.P., El Faylali, H.: A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications. AEU-Int. J. Electron. Commun. 145, 154071 (2022)

    Google Scholar 

  • Alluri, S., Rangaswamy, N.: Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications. Microw. Opt. Technol. Lett. 62(12), 3985–3991 (2020)

    Google Scholar 

  • Almohammed, B., et al.: Electro-textile wearable antennas in wireless body area networks: materials, antenna design, manufacturing techniques, and human body consideration—a review. Text. Res. J. 91(5/6), 646–663 (2021)

    Google Scholar 

  • Alqadami, A.S., Bialkowski, K.S., Mobashsher, A.T., Abbosh, A.M.: Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis. IEEE Trans. Biomed. Circuits Syst. 13(1), 124–134 (2018)

    Google Scholar 

  • Amendola, S., Palombi, A., Marrocco, G.: Inkjet printing of epidermal RFID antennas by self-sintering conductive ink. IEEE Trans. Microw. Theory Tech. 66(3), 1561–1569 (2017)

    ADS  Google Scholar 

  • Baum, T.C., Ziolkowski, R.W., Ghorbani, K., Nicholson, K.J.: Embroidered active microwave composite preimpregnated electronics—pregtronics. IEEE Trans. Microw. Theory Tech. 64(10), 3175–3186 (2016)

    ADS  Google Scholar 

  • Bito, J., Bahr, R., Hester, J.G., Nauroze, S.A., Georgiadis, A., Tentzeris, M.M.: A novel solar and electromagnetic energy harvesting system with a 3-D printed package for energy efficient Internet-of-Things wireless sensors. IEEE Trans. Microw. Theory Tech. 65(5), 1831–1842 (2017)

    ADS  Google Scholar 

  • Boutaldat, M., Chakhchaoui, N., Eddiai, A., Meddad, M., Cherkaoui, O., Rguiti, M., Mazroui, M.H.: Modeling and electromechanical performance analysis of polyvinylidene difluoride/textile-system for energy harvesting from the human body toward a novel class of self-powered sensors. Polym. Adv. Technol. 33(10), 3216–3227 (2022)

    Google Scholar 

  • Chakhchaoui, N., Ennamiri, H., Hajjaji, A., Eddiai, A., Meddad, M., Boughaleb, Y.: Theoretical modeling of piezoelectric energy harvesting in the system using technical textile as a support. Polym. Adv. Technol. 28(9), 1170–1178 (2017)

    Google Scholar 

  • Chakhchaoui, N., Jaouani, H., Ennamiri, H., Eddiai, A., Hajjaji, A., Meddad, M., Boughaleb, Y.: Modeling and analysis of the effect of substrate on the flexible piezoelectric films for kinetic energy harvesting from textiles. J. Compos. Mater. 53(24), 3349–3361 (2019)

    ADS  Google Scholar 

  • Chi, Y.J., Lin, C.H., Chiu, C.W.: Design and modeling of a wearable textile rectenna array implemented on Cordura fabric for batteryless applications. J. Electromagnet. Waves Appl. 34(13), 1782–1796 (2020)

    ADS  Google Scholar 

  • Douhi, S., Prasad, G.R.K., Eddiai, A., Cherkaoui, O., Mazroui, M., Das, S.: A miniaturized wearable textile UWB monopole antenna for RF energy harvesting. J. Nano- Electron. Phys. 15(1), 01028 (2023a)

    Google Scholar 

  • Douhi, S., Islam, T., Saravanan, R.A., Eddiai, A., Das, S., Cherkaoui, O.: Design of a flexible rectangular antenna array with high gain for RF energy harvesting and wearable devices. J. Nano-Electron. Phys. 15(3), 03010 (2023b)

    Google Scholar 

  • Eddiai, A., Meddad, M., Mazroui, M.H., Boughaleb, Y., Idiri, M., Khanfer, R., Rguiti, M.: Strain effects on an electrostrictive polymer composite for power harvesting: experiments and modeling. Polym. Adv. Technol. 27(5), 677–684 (2016)

    Google Scholar 

  • Eddiai, A., Meddad, M., Farhan, R., Mazroui, M.H., Rguiti, M., Guyomar, D.: Using PVDF piezoelectric polymers to maximize power harvested by mechanical structure. Superlatt. Microstruct. 127, 20–26 (2019)

    ADS  Google Scholar 

  • Farhan, R., Eddiai, A., Meddad, M., Chakhchaoui, N., Rguiti, M., Mazroui, M.H.: Improvement in energy conversion of electrostrictive composite materials by new approach via piezoelectric effect: modeling and experiments. Polym. Adv. Technol. 32(1), 123–130 (2021)

    Google Scholar 

  • Halimi, M.A., Shome, P.P., Khan, T., Rengarajan, S.R.: Efficient single and broadband microwave rectifiers for RFEH/WPT enabled low power 5G sub-6 GHz devices. AEU-Int. J. Electron. Commun. 165, 154645 (2023)

    Google Scholar 

  • Jiang, Z.H., Cui, Z., Yue, T., Zhu, Y., Werner, D.H.: Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body area networks. IEEE Trans. Biomed. Circuits Syst. 11(4), 920–932 (2017)

    Google Scholar 

  • Kanagasabai, M., Sambandam, P., Alsath, M.G.N., Palaniswamy, S., Ravichandran, A., Girinathan, C.: Miniaturized circularly polarized UWB antenna for body centric communication. IEEE Trans. Antennas Propag. 70(1), 189–196 (2021)

    ADS  Google Scholar 

  • Karimyian-Mohammadabadi, M., Dorostkar, M.A., Shokuohi, F., Shanbeh, M., Torkan, A.: Super-wideband textile fractal antenna for wireless body area networks. J. Electromagnet. Waves Appl. 29(13), 1728–1740 (2015)

    ADS  Google Scholar 

  • Khan, D., Oh, S.J., Yeo, S., Ryu, Y., In, S.H., Rad, R.E., Lee, K.Y.: A high-efficient wireless power receiver for hybrid energy-harvesting sources. IEEE Trans. Power Electron. 36(10), 11148–11162 (2021)

    ADS  Google Scholar 

  • Kundu, S.: Experimental study of a printed ultra-wideband modified circular monopole antenna. Microw. Opt. Technol. Lett. 61(5), 1388–1393 (2019)

    Google Scholar 

  • Kundu, S., Chatterjee, A.: A compact super wideband antenna with stable and improved radiation using super wideband frequency selective surface. AEU-Int. J. Electron. Commun. 150, 154200 (2022)

    Google Scholar 

  • Li, H., Du, J., Yang, X.X., Gao, S.: Low-profile all-textile multiband microstrip circular patch antenna for WBAN applications. IEEE Antennas Wirel. Propag. Lett. 21(4), 779–783 (2022)

    ADS  Google Scholar 

  • Liu, Q., Yi, C., Chen, J., Xia, M., Lu, Y., Wang, Y., Wang, D.: Flexible, breathable, and highly environmental-stable Ni/PPy/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas. Compos. Part B Eng. 215, 108752 (2021)

    Google Scholar 

  • Lui, K.W., Murphy, O.H., Toumazou, C.: A wearable wideband circularly polarized textile antenna for effective power transmission on a wirelessly-powered sensor platform. IEEE Trans. Antennas Propag. 61(7), 3873–3876 (2013)

    ADS  Google Scholar 

  • Maity, S., Tewary, T., Mukherjee, S., Roy, A., Sarkar, P.P., Bhunia, S.: Super wideband high gain hybrid microstrip patch antenna. AEU-Int. J. Electron. Commun. 153, 154264 (2022)

    Google Scholar 

  • Mohandoss, S., Palaniswamy, S.K., Thipparaju, R.R., Kanagasabai, M., Naga, B.R.B., Kumar, S.: On the bending and time domain analysis of compact wideband flexible monopole antennas. AEU-Int. J. Electron. Commun. 101, 168–181 (2019)

    Google Scholar 

  • Quarfoth, R., Zhou, Y., Sievenpiper, D.: Flexible patch antennas using patterned metal sheets on silicon. IEEE Antennas Wirel. Propag. Lett. 14, 1354–1357 (2015)

    ADS  Google Scholar 

  • Rahman, M.A., Singh, M.S.J., Samsuzzaman, M.D., Islam, M.T.: A compact skull-shaped defected ground super wideband microstrip monopole antenna for short-distance wireless communication. Int. J. Commun. Syst. 33(14), e4527 (2020)

    Google Scholar 

  • Ramanujam, P., Venkatesan, P.R., Arumugam, C., Ponnusamy, M.: Design of miniaturized super wideband printed monopole antenna operating from 0.7 to 18.5 GHz. AEU-Int. J. Electron. Commun. 123, 153273 (2020)

    Google Scholar 

  • Sambandam, P., Kanagasabai, M., Ramadoss, S., Natarajan, R., Alsath, M.G.N., Shanmuganathan, S., Palaniswamy, S.K.: Compact monopole antenna backed with fork-slotted EBG for wearable applications. IEEE Antennas Wirel. Propag. Lett. 19(2), 228–232 (2019)

    ADS  Google Scholar 

  • Singhal, S., Singh, A.K.: CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microw. Antennas Propag. 10(15), 1701–1707 (2016)

    Google Scholar 

  • Technical Textiles Inc.: Technical application guide: Shieldex Nora Dell-CR. [Online]. (2018)

  • Tewary, T., Maity, S., Mukherjee, S., Roy, A., Sarkar, P.P., Bhunia, S.: High gain miniaturrized super-wideband microstrip patch antenna. Int. J. Commun. Syst. 35(11), e5181 (2022)

    Google Scholar 

  • Vital, D., Bhardwaj, S., Volakis, J.L.: Textile-based large area RF-power harvesting system for wearable applications. IEEE Trans. Antennas Propag. 68(3), 2323–2331 (2019)

    ADS  Google Scholar 

  • Wagih, M., Weddell, A.S., Beeby, S.: Omnidirectional dual-polarized low-profile textile rectenna with over 50% efficiency for sub-μW/cm 2 wearable power harvesting. IEEE Trans. Antennas Propag. 69(5), 2522–2536 (2020)

    ADS  Google Scholar 

  • Wang, Z., Zhang, L., Bayram, Y., Volakis, J.L.: Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans. Antennas Propag. 60(9), 4141–4147 (2012)

    ADS  Google Scholar 

  • Wang, Z., Qin, L., Chen, Q., Yang, W., Qu, H.: Flexible UWB antenna fabricated on polyimide substrate by surface modification and in situ self-metallization technique. Microelectron. Eng. 206, 12–16 (2019)

    Google Scholar 

  • Wang, Y., Zhang, J., Su, Y., Jiang, X., Zhang, C., Wang, L., Cheng, Q.: Efficiency enhanced seven-band omnidirectional rectenna for RF energy harvesting. IEEE Trans. Antennas Propag. 70(9), 8473–8484 (2022)

    ADS  Google Scholar 

  • Yang, H., Liu, X.: Wearable dual-band and dual-polarized textile antenna for on-and off-body communications. IEEE Antennas Wirel. Propag. Lett. 19(12), 2324–2328 (2020)

    ADS  Google Scholar 

  • Yang, H., Liu, X., Fan, Y., Xiong, L.: Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications. IEEE Trans. Antennas Propag. 70(6), 4189–4199 (2022)

    ADS  Google Scholar 

  • Zhang, K., Soh, P.J., Yan, S.: Design of a compact dual-band textile antenna based on metasurface. IEEE Trans. Biomed. Circuits Syst. 16(2), 211–221 (2022)

    Google Scholar 

  • Zhao, C., Bai, Y., Wei, Q.: A 2 to 50 GHz all-metal Vivaldi antenna for ultra-wideband (UWB) application. AEU-Int. J. Electron. Commun. 148, 154162 (2022)

    Google Scholar 

  • Zu, H.R., Wu, B., Zhang, Y.H., Zhao, Y.T., Song, R.G., He, D.P.: Circularly polarized wearable antenna with a low profile and low specific absorption rate using highly conductive graphene film. IEEE Antennas Wirel. Propag. Lett. 19(12), 2354–2358 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

We want to thank the Moroccan Ministry of Higher Education, Scientific Research and Innovation, and the OCP Foundation, which funded this work through the APRD research program.

Funding

Moroccan Ministry of Higher Education, Scientific Research and Innovation; OCP Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, design, and simulation. Data collection, analysis, and simulation were initially carried out by SD, AE, SD. Antenna prototype Fabrication and Measurements are performed by BTPM and SD. Additional input to analysis and simulation was given by BTPM, MM, OC, MM. All authors contributed to complete the writing and presentation of the whole manuscript.

Corresponding authors

Correspondence to Saïd Douhi or Adil Eddiai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest or competing interests.

Ethical approval

This research study complied with the ethical standards.

Consent to participate

Informed consent was obtained from all authors.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douhi, S., Eddiai, A., Das, S. et al. Design of a compact super wideband all-textile antenna for radio frequency energy harvesting and wearable devices. Opt Quant Electron 55, 1189 (2023). https://doi.org/10.1007/s11082-023-05498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05498-x

Keywords

Navigation