Skip to main content
Log in

Optical directional antiferromagnetic β magnetic directional optimistic density

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, \(\beta -\)electrical \(\phi _{\beta }( {\textbf{e}}_{1}),\phi _{\beta }({\textbf{e}}_{2}),\phi _{\beta }({\textbf{e}} _{3})\) directional microscale is given by directional electroosmotic \(\beta -\)velocity. Also, \(\beta -\)magnetical \(\phi _{\beta }( {\textbf{e}}_{1}),\phi _{\beta }({\textbf{e}}_{2}),\phi _{\beta }({\textbf{e}} _{3})\) directional microscales are presented by electroosmotic \(\beta -\)velocity. Antiferromagnetic \(\beta -\)magnetical \(\phi _{\beta }({\textbf{e}}_{1}),\phi _{\beta }({\textbf{e}}_{2}),\phi _{\beta }( {\textbf{e}}_{3})\) directional microscales are designed by electric optimistic density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Adedoyin, A.A., Enakoutsa, K., Bammann, D.J.: On the formulation of the kinematics and thermodynamics for polycrystalline materials undergoing phase transformation. Int. J. Plast. 123, 101–120 (2019)

    Google Scholar 

  • Ahmed, F.: Effects of uniform rotation and electromagnetic potential on the modified Klein-Gordon oscillator in a cosmic string space-time. Int. J. Geom. Methods Modern Phys. 18(12), 2150187 (2021)

    ADS  MathSciNet  Google Scholar 

  • Alexakis, A., Chibbaro, S.: Local energy flux of turbulent flows. Phys. Rev. Fluids 5(9), 094604 (2020)

    ADS  Google Scholar 

  • Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    ADS  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys. Rev. Lett. 64(18), 2107 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, R., Bishop, A.R., Dandoloff, R.: Anholonomy of a moving space curve and applications to classical magnetic chains. Phys. Rev. B 47(6), 3108 (1993)

    ADS  Google Scholar 

  • Bilgi, O. R., Savaş, Ö.: Vortex wakes of tip loaded rotors at low Reynolds numbers. Phys. Fluids, 33(7), (2021)

  • Bliokh, K.Y.: Geometrodynamics of polarized light: berry phase and spin Hall effect in a gradient-index medium. J. Opt. A Pure Appl. Opt. 11(9), 094009 (2009)

    ADS  Google Scholar 

  • Bliokh, K.Y., Niv, A., Kleiner, V., Hasman, E.: Geometrodynamics of spinning light. Nat. Photon. 2(12), 748 (2008)

    ADS  Google Scholar 

  • Chian, A.C., Rempel, E.L., Silva, S.S., Bellot Rubio, L., Gošić, M.: Intensification of magnetic field in merging magnetic flux tubes driven by supergranular vortical flows. Monthly Not. Royal Astron. Soc. 518(4), 4930–4942 (2023)

    ADS  Google Scholar 

  • Davidson, M.: Multi-valued vortex solutions to the Schrö dinger equation and radiation. Ann. Phys. 418, 168196 (2020)

    MATH  Google Scholar 

  • Farías, M.B., Lombardo, F.C., Soba, A., Villar, P.I., Decca, R.S.: Towards detecting traces of non-contact quantum friction in the corrections of the accumulated geometric phase. npj Quantum Inf. 6(1), 25 (2020)

    ADS  Google Scholar 

  • Frustaglia, D., Nitta, J.: Geometric spin phases in Aharonov-Casher interference. Solid State Commun. 311, 113864 (2020)

    Google Scholar 

  • Gilmore, R.: Length and curvature in the geometry of thermodynamics. Phys. Rev. A 30(4), 1994 (1984)

    ADS  MathSciNet  Google Scholar 

  • Gürbüz, N.E.: The pseudo-null geometric phase along optical fiber. Int. J. Geom. Methods Modern Phys. 18(14), 2150230 (2021)

    ADS  MathSciNet  Google Scholar 

  • Gürbüz, N.E.: Three geometric phases with the visco-Da Rios equation for the hybrid frame in R13. Optik 248, 168116 (2021)

    ADS  Google Scholar 

  • Gürbüz, N.E.: The evolution of the electric field with Frenet frame in Lorentzian Lie groups. Optik 247, 167989 (2021)

    ADS  Google Scholar 

  • Hasimoto, H.: A soliton on a vortex filament. J. Fluid Mech. 51(3), 477–485 (1972)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hu, X., Li, X., Yu, S., Lin, P., Zhu, Z.: Hydrodynamic effects of the flow-induced vibrations on the mass transfer and permeate flux in a desalination membrane. Desalination 564, 116710 (2023)

    Google Scholar 

  • Jiang, Q.D., Hansson, T.H., Wilczek, F.: Geometric induction in chiral superconductors. Phys. Rev. Lett. 124(19), 197001 (2020)

    ADS  MathSciNet  Google Scholar 

  • Jiao, F., Li, Q., He, Y.: Electromotive force induced by the moving non-magnetic phase in ferrofluids. Sens. Actuators A Phys. 317, 112472 (2021)

    Google Scholar 

  • Jing, L., Cheng, J., Ben, T.: Analytical method for magnetic field and electromagnetic performances in switched reluctance machines. J. Electr. Eng. Technol. 14, 1625–1635 (2019)

    Google Scholar 

  • Jisha, C.P., Nolte, S., Alberucci, A.: Geometric phase in optics: from wavefront manipulation to waveguiding. Laser Photon. Rev. 15(10), 2100003 (2021)

    ADS  Google Scholar 

  • Körpınar, T.: Optical directional binormal magnetic flows with geometric phase: Heisenberg ferromagnetic model. Optik 219, 165134 (2020)

    ADS  Google Scholar 

  • Korpinar, T., Demirkol, R.C.: Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold. J. Modern Opt. 66(8), 857–867 (2019)

    ADS  MathSciNet  Google Scholar 

  • Korpinar, T., Korpinar, Z.: Geometric phase for timelike spherical normal magnetic charged particles optical ferromagnetic model. J. Taibah Univ. Sci. 14(1), 742–749 (2020)

    MathSciNet  Google Scholar 

  • Körpınar, T., Körpınar, Z.: Spherical electric and magnetic phase with Heisenberg spherical ferromagnetic spin by some fractional solutions. Optik 242, 167164 (2021)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical spherical Ss-electric and magnetic phase with fractional q-HATM approach. Optik 243, 167274 (2021)

    ADS  Google Scholar 

  • Körpinar, Z., Körpinar, T.: Optical hybrid electric and magnetic B1-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)

    ADS  Google Scholar 

  • Körpınar, Z., Körpınar, T.: Optical hybrid electric and magnetic B\(_{1}\)-phase with Landau Lifshitz approach. Optik 247, 167917 (2021)

    ADS  Google Scholar 

  • Körpınar, Z., Körpınar, T.: Optical tangent hybrid electromotives for tangent hybrid magnetic particle. Optik 247, 167823 (2021)

    ADS  Google Scholar 

  • Körpinar, Z., Körpinar, T.: Optical normal antiferromagnetic electromotive microscale with optimistic density. Optik 261, 169019 (2022)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Optical hybrid electrical visco ferromagnetic microscale with hybrid electrolytic thruster. Opt. Quantum Electr. 54(12), 826 (2022)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic complex electromotive microscale with first type Schrödinger frame. Opt. Quantum Electron. 55(6), 505 (2023)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic Schr ödinger electromotive microscale in Minkowski space. Opt. Quantum Electron. 55(8), 681 (2023)

    Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic viscosity model for electromotive microscale with second type nonlinear heat frame. Int. J. Geom. Methods Modern Phys. p. 2350163, (2023)

  • Körpinar, Z., Körpinar, T.: New optical quasi normal antiferromagnetic microscale in Heisenberg algebra. Int. J. Geom. Methods Modern Phys. 20(06), 2350104 (2023)

    ADS  MathSciNet  Google Scholar 

  • Körpinar, T., Körpinar, Z.: Antiferromagnetic viscosity model for electromotive microscale with second type nonlinear heat frame. Int. J. Geom. Methods Modern Phys. p. 2350163, (2023).

  • Körpinar, T., Körpinar, Z.: Optical recursional binormal optical visco Landau-Lifshitz electromagnetic optical density. Commun. Theor. Phys. 75(5), 055003 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  • Körpinar, T., Körpinar, Z. : Optical visco microfluidic optimistic hybrid optical electromotive microscale. Int. J. Modern Phys. B, p. 2450159, (2023)

  • Körpinar, Z., Körpinar, T. : New optical recursional spherical ferromagnetic flux for optical sonic microscale. J. Nonlinear Opt. Phys. Mater. p. 2350051, (2023)

  • Körpınar, T., Körpınar, Z.: Optical phase of recursional hybrid visco ferromagnetic electromagnetic microscale. Phys. Lett. A 462, 128651 (2023)

    MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling along with coiled optical fiber on the unit 2-sphere \(\mathbb{S} ^{2}\). Rev. Mex. Fis. 65(6), 626–633 (2019)

    MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations. Eur. Phys. J. D 73(9), 203 (2019)

    ADS  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space. Int. J. Geom. Methods Modern Phys. 16(8), 1950117 (2019)

    MathSciNet  MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Revista Mexicana de Física 66(4), 431–439 (2020)

    MathSciNet  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: New analytical solutions for the inextensible Heisenberg ferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Physica Scripta 96(8), 085219 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021)

    ADS  Google Scholar 

  • Korpinar, T., Demirkol, R.C., Korpinar, Z.: New fractional Heisenberg antiferromagnetic model and solitonic magnetic flux surfaces with normal direction. Int. J. Geom. Methods Modern Phys. 18(09), 2150136 (2021)

    ADS  MathSciNet  Google Scholar 

  • Körpinar, T., Demirkol, R.C., Körpinar, Z., Asil, V.: Fractional solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the binormal direction. Revista mexicana de física 67(3), 452–464 (2021)

    MathSciNet  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Polarization of propagated light with optical solitons along the fiber in de-sitter space. Optik 226, 165872 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Yeneroğlu, M.: Optical energy of spherical velocity with optical magnetic density in Heisenberg sphere space \({\mathbb{S} }_{Heis^{3}}^{2}\). Optik 247, 167937 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Sazak, A., Körpınar, Z.: Optical effects of some motion equations on quasi-frame with compatible Hasimoto map. Optik 247, 167914 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD. Optik 247, 167823 (2021)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Yeneroğlu, M.: New optical total recursion for electromagnetic flux of optical fiber with optical microscale. Optik 264, 169373 (2022)

    ADS  Google Scholar 

  • Körpinar, T., Sazak, A., Körpinar, Z.: Optical recursion systems for the Hasimoto map and optical applications with spherical frame. Optik 260, 168909 (2022)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Optical modeling for hybrid visco ferromagnetic electromotive energy flux microscale. Optik 268, 169770 (2022)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Normal electromagnetic flux surfaces with the existence of the visco-modified effect. J. Comput. Electron. 21(3), 684–712 (2022)

    MATH  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Optical flux surfaces throughout normal evoluted flowlines in the presence of the modified visco effect. Eur. Phys. J. Plus 137(10), 1168 (2022)

    Google Scholar 

  • Körpınar, T., Ünlütürk, Y., Körpınar, Z.: A novel approach to the motion equations of null Cartan curves via the compatible Hasimoto map. Optik 290, 171220 (2023)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z., Asil, V.: Maxwellian evolution equations along the uniform optical fiber in Minkowski space. Optik 217, 164561 (2020)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Approximate solutions for the inextensible Heisenberg antiferromagnetic flow and solitonic magnetic flux surfaces in the normal direction in Minkowski space. Optik 238, 166403 (2021)

    ADS  Google Scholar 

  • Körpınar, T., Körpınar, Z., Demirkol, R.C.: Binormal schrodinger system of wave propagation field of light radiate in the normal direction with q-HATM approach. Optik 235, 166444 (2020)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Körpınar, Z.: Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik 242, 167302 (2021)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Electric flux fibers with spherical antiferromagnetic approach with electroosmotic velocity. Optik 252, 168108 (2022)

    ADS  Google Scholar 

  • Körpınar, T., Demirkol, R.C., Asil, V., Körpinar, Z.: Magnetic flux surfaces by the fractional Heisenberg antiferromagnetic flow of magnetic b- lines in binormal direction in Minkowski space. J. Magn. Magn. Mater. 549, 168952 (2022)

    Google Scholar 

  • Körpinar, T., Körpinar, Z., Yeneroğlu, M.: New optical total recursion for electromagnetic flux of optical fiber with optical microscale. Optik 264, 169373 (2022)

    ADS  Google Scholar 

  • Körpinar, T., Körpinar, Z., Asil, V.: Optical electromotive microscale with first type Schrödinger frame. Optik 276, 170629 (2023)

    ADS  Google Scholar 

  • Moroz, A., Rudnev, I., Kashurnikov, V., Khokhorin, S., Batulin, R.: (2023). Features of Magnetization and Vortex System of Magnesium Diboride. J. Supercond. Novel Magn. pp. 1-8

  • Namikawa, T., Hamabata, H.: The effect of microscale random Alfvén waves on the propagation of large-scale Alfvén waves. J. Plasma Phys. 29(2), 243–253 (1983)

    ADS  Google Scholar 

  • Özüpak, Y., Mamiş, M.S.: Realization of electromagnetic flux and thermal analyses of transformers by finite element method. IEEJ Transact. Electr. Electron. Eng. 14(10), 1478–1484 (2019)

    Google Scholar 

  • Ricca, R.L.: Physical interpretation of certain invariants for vortex filament motion under LIA. Phys. Fluids A Fluid Dyn. 4(5), 938–944 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  • Ricca, R.L.: Inflexional disequilibrium of magnetic flux-tubes. Fluid Dyn. Res. 36(4–6), 319 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  • Sazak, A.: Energy simulations for some optic systems: the Heisenberg ferromagnetic and the recursive vortex filament approximations. Opt. Quantum Electron. 55(5), 479 (2023)

    Google Scholar 

  • Shoukat, G., Idrees, H., Sajid, M., Ali, S., Ayaz, Y., Nawaz, R., Ansari, A.R.: Numerical analysis of permeate flux in reverse osmosis by varying strand geometry. Sci. Rep. 12(1), 16636 (2022)

    ADS  Google Scholar 

  • Terrington, S.J., Hourigan, K., Thompson, M.C.: The generation and diffusion of vorticity in three-dimensional flows: Lyman’s flux. J. Fluid Mech. 915, A106 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  • Thong, K.H., Melatos, A., Drummond, L.V.: Stability of interlinked neutron vortex and proton flux-tube arrays in a neutron star-III. Proton feedback. Mon. Not. Royal Astron. Soc. 521(4), 5724–5737 (2023)

    ADS  Google Scholar 

  • Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M.: Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68(6), 2916–2921 (1990)

    ADS  Google Scholar 

  • Vieira, V.R., Horley, P.P.: The Frenet-Serret representation of the Landau-Lifshitz-Gilbert equation. J. Phys. A Math. Theor. 45(6), 065208 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • Vora, A.M., Gandhi, A.L.: Theoretical investigation of superconducting state parameters of some bulk metallic glasses using pseudopotential approach. J. Supercond. Novel Magn. 33, 323–330 (2020)

    Google Scholar 

  • Wassmann, F., Ankiewicz, A.: Berry’s phase analysis of polarization rotation in helicoidal fibers. Appl. Opt. 37(18), 3902–3911 (1998)

    ADS  Google Scholar 

  • Zhao, J.C.: Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure-property relationships. Progr. Mater. Sci. 51(5), 557–631 (2006)

    Google Scholar 

Download references

Funding

No funding was received for the study.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this research paper have directly participated in the planning, execution, or analysis of this study; All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Talat Körpinar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körpinar, T., Körpinar, Z. Optical directional antiferromagnetic β magnetic directional optimistic density. Opt Quant Electron 55, 1237 (2023). https://doi.org/10.1007/s11082-023-05467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05467-4

Keywords

Navigation